МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

М.А. Салахутдинов, И.Л. Кузнецов

ПРОЕКТИРОВАНИЕ УСИЛЕНИЯ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

Учебно-методическое пособие

Казань 2019 УДК 624.014 ББК 38.54 С16

Салахутдинов М.А., Кузнецов И.Л.

С16 Проектирование усиления металлических конструкций: Учебнометодическое пособие / М.А. Салахутдинов, И.Л. Кузнецов — Казань: Изд-во Казанск. гос. архитект.-строит. ун-та, 2019. — 99 с.

Печатается по решению Реакционно-издательского совета Казанского государственного архитектурно-строительного университета

В учебно-методическом пособии приводятся основные положения расчета металлических конструкций при наличии дефектов и повреждений, и их усиления. Изложенный материал позволяет понять основные принципы расчета и проектирования усиления металлических конструкций и приобрести навыки для решения конкретных задач.

Учебно-методическое пособие предназначено для практических занятий студентам направления подготовки 08.04.01 «Строительство», направленности (профиля) «Теория и проектирование зданий и сооружений».

Рецензент:

Кандидат технических наук, заведующий кафедрой МКиИС Г.Н. Шмелёв

> УДК 624.014 ББК 38.54

- © Казанский государственный архитектурно-строительный университет, 2019
- © Салахутдинов М.А., Кузнецов И.Л., 2019

СОДЕРЖАНИЕ

Занятие № 1ж Поверочный расчет ослабленного элемента при действии продольной силы с изгибом	4
Занятие № 2. Поверочный расчет искривленной стойки	6
Занятие № 3. Поверочный расчет раскоса фермы с погибью	10
Занятие № 4. Усиление изгибаемого элемента	24
Занятие № 5. Расчет усиления по критерию краевой текучести	27
Занятие № 6. Расчет усиления центрально-сжатой стойки из расчета на устойчивость	35
Занятие № 7. Расчет прогиба усиленной балки с учетом остаточного прогиба	39
Занятие № 8. Расчет и конструирование стропильной фермы из гнутосварных профилей	41
Занятие № 9. Расчет и конструирование стропильной фермы из уголков	51
Список литературы	63
Приложение 1. Индивидуальное задание к занятиям	64
Приложение 2. Расчетные сопротивления стали, сварных и болтовых соединений, кН/см ²	72
Приложение 3. Коэффициенты для расчета на устойчивость центрально- и внецентренно-сжатых элементов.	78
Приложение 4. Приближенные значения радиусов инерции $\mathbf{i} = \sqrt{I/A}$ некоторых типов сечений.	88
Приложение 5. Сортаменты	89

Занятие № 1

ПОВЕРОЧНЫЙ РАСЧЕТ ОСЛАБЛЕННОГО ЭЛЕМЕНТА ПРИ ДЕЙСТВИИ ПРОДОЛЬНОЙ СИЛЫ С ИЗГИБОМ

Проверку прочности элементов, имеющих ослабления в виде вырезов, вырывов, подрезов и т.д., следует проводить по площади нетто с учетом эксцентриситетов от смещения центра тяжести ослабленного сечения относительно центра тяжести первоначального сечения в соответствии с указаниями п.9.1.1 СП 16.13330.2017.

Допускается вместо формулы (105) по СП 16.13330.2017 применять формулу с использованием компенсирующих добавок усилий $N^{\text{осл}}$, $M_{\text{x}}^{\text{осл}}$ и $M_{\text{y}}^{\text{осл}}$:

$$\left(\frac{N + N^{\text{осл}}}{A \cdot R_{yo} \cdot \gamma_c}\right)^n + \frac{(M_x + M_x^{\text{осл}})y_c}{C_x \cdot J_x \cdot R_{yo} \cdot \gamma_c} + \frac{(M_y + M_y^{\text{осл}})x_c}{C_y \cdot J_y \cdot R_{yo} \cdot \gamma_c} \le 1,$$
(1.1)

где

$$N^{\text{осл}} = \sigma^{\text{осл}} \cdot A^{\text{осл}}; \qquad M_{x}^{\text{осл}} = N^{\text{осл}} \cdot y^{\text{осл}}; \qquad M_{y}^{\text{осл}} = N^{\text{осл}} \cdot x^{\text{осл}};$$

$$\sigma^{ ext{och}} = \sigma_f \left(1 - \frac{A^{ ext{och}}}{A} - \frac{J_{ ext{x}}^{ ext{och}}}{J_{ ext{x}}} - \frac{J_{ ext{y}}^{ ext{och}}}{J_{ ext{y}}} \right)^{-1};$$

 x_c, y_c — координаты наиболее напряженной точки реального поперечного сечения относительно главных центральных осей неослабленного сечения; A, J_x, J_y — геометрические характеристики неослабленного (проектного) сечения; $x^{\text{осл}}, y^{\text{осл}}$ — координаты центра тяжести площади ослабления относительно главных центральных осей проектного (неослабленного) сечения; $J_x^{\text{осл}}, J_y^{\text{осл}}$ — моменты инерции ослабленного ослабления относительно тех же осей; R_{yo} — расчетное сопротивление стали принимается на основании проведения контрольных испытаний опытных образцов или по сертификату (при удовлетворительном состоянии материала концентраций). Коэффициент γ_c определяется по табл. 1 СП 16.13330.2017.

$$\sigma_f = \frac{N}{A} + \frac{M_{\chi} \cdot y^{\text{осл}}}{J_{\chi}} + \frac{M_{\chi} \cdot x^{\text{осл}}}{J_{\chi}}$$

— напряжение в центре тяжести площади ослабления, вычисленное в координатах для неослабленного сечения при действии заданных усилий. Значения коэффициентов n, C_x , C_y в формуле (1.1) принимаются по табл. Е.1 СП 16.13330.2017 для неослабленного сечения. Данные коэффициенты учитывают влияние формы поперечного сечения при развитии пластических деформаций.

Значение предела текучести R_{yo} и временного сопротивления стали эксплуатируемых конструкций R_{uo} определяются по данным заводских сертификатов или по результатам испытаний образцов.

Если приведенные в сертификате или полученные при контрольных испытаниях значения этих величин ниже, чем предусмотренные государственными стандартами или техническими условиями на сталь, действовавшими во время строительства, то R_{yo} и R_{uo} принимаются по минимальным значениям данных сертификата или полученным при испытаниях.

Коэффициент надежности по материалу следует принимать:

- для металлических строительных конструкций, изготовленных до 1932 г., и сталей, у которых полученные при испытаниях значения предела текучести ниже 215 Мпа, $\gamma_m = 1,2$;
- для конструкций, изготовленных в период с 1932 по 1982 гг., $\gamma_m=1$,1, для сталей с пределом текучести ниже 380 Мпа и $\gamma_m=1$,15 для сталей с $\sigma_T(R_y)\geq$ 380 МПа;
- для строительных конструкций, изготовленных после 1982 г., по табл. 3 СП 16.13330.2017.

Пример 1

Проверить прочность несущего элемента конструкции в ослабленном сечении, изготовленного из стального прокатного двутавра № 30 по ГОСТ 8239-72*. Предел текучести по сертификату $\sigma_T(R_y)$ – 345 МПа. A=46.5 см²; $W_x=472$ см³; $J_x=7080$ см⁴. Площадь ослабления $A^{\rm ocn}=3.3$ см². Расстояние от главной центральной оси до центра тяжести площади ослабления $y^{\rm ocn}=14.7$ см. Усилие, действующее в расчетном сечении: $M_x=102$ кН·м; N=400 кН.

Решение

Находим напряжения, которые могли быть в месте дефекта до ослабления сечения:

$$\sigma_f = \frac{N}{A} + \frac{M_\chi \cdot y^{\text{осл}}}{J_\chi} = \frac{400}{46.5} + \frac{10200 \cdot 14.7}{7080} = 29.78 \frac{\text{кH}}{\text{см}^2}.$$

Определяем напряжения ослабления в месте дефекта и соответствующие компенсирующие добавки усилий:

$$\sigma^{\text{осл}} = \sigma_f \left(1 - \frac{A^{\text{осл}}}{A} - \frac{J_x^{\text{осл}}}{J_x} \right)^{-1} = \frac{29,78}{(1 - 0,071 - 0,1)} = 35,92 \frac{\text{кH}}{\text{см}^2},$$

где

$$\frac{J_{\rm x}^{\rm ocn}}{J_{\rm x}} = \frac{A^{\rm ocn} \cdot (y^{\rm ocn})^2}{J_{\rm x}} = \frac{3.3 \cdot 14.7^2}{7080} = 0.1;$$
 $N^{\rm ocn} = \sigma^{\rm ocn} \cdot A^{\rm ocn} = 35.91 \cdot 3.3 = 118.5 \; {\rm kH}; \quad M_{\rm x}^{\rm ocn} = N^{\rm ocn} \cdot y^{\rm ocn} = 118.5 \cdot 0.147$ $= 17.4 \; {\rm kH} \cdot {\rm m}.$

Определяем расчетное сопротивление стали:

$$R_{yo} = \frac{\sigma_T}{\gamma_m} = \frac{34,4}{1,1} = 31,36 \frac{\text{KH}}{\text{CM}^2}.$$

Здесь $\gamma_m=1$,1, так как сталь изготовлена до 1982 г.

Проверяем прочность элемента в ослабленном сечении:

$$\left(\frac{N+N^{\text{осл}}}{A\cdot R_{yo}\cdot \gamma_c}\right)^n + \frac{(M_x+M_x^{\text{осл}})y_c}{C_x\cdot J_x\cdot R_{yo}\cdot \gamma_c} =$$

$$= \left(\frac{400+118,54}{46,5\cdot 31,36\cdot 0,9}\right)^{1,5} + \frac{(10200+1742)15}{1,12\cdot 7080\cdot 31,36\cdot 0,9} = 0,248+0,8 =$$

$$= 1,04 > 1.$$

Условие не выполняется, следовательно, требуется проведение мероприятий по ограничению нагрузки либо по усилению конструкции.

Занятие № 2

ПОВЕРОЧНЫЙ РАСЧЕТ ИСКРИВЛЕННОЙ СТОЙКИ

При равномерном коррозионном износе элементов расчетную площадь поперечного сечения определяют по формуле:

$$A_{ef} = (1 - k_{SA} \cdot \Delta^*) A_o , \qquad (2.1)$$

где A_o — площадь поперечного сечения элемента без учета коррозийных повреждений; k_{SA} — коэффициент слитности сечения, равный отношению периметра контура сечения, контактирующего со средой, к площади поперечного сечения. Приближенно величину коэффициента k_{SA} можно принимать: для уголков 2/t, для замкнутых профилей 1/t, для швеллеров и двутавров 4/(t+d). Здесь t и d — толщины полки и стенки, соответственно.

Расчетный момент сопротивления для проверки прочности изгибаемых элементов определяется по формуле:

$$W_{ef} = (1 - k_{SW} \cdot \Delta^*) W_o , \qquad (2.2)$$

где W_{o} — момент сопротивления сечения без учета коррозийных повреждений; k_{SW} — коэффициент изменения момента сопротивления вследствие коррозийного износа.

Коэффициенты k_{SW} для некоторых типоразмеров прокатных профилей приведены в табл. 2.1.

Величина проникновения коррозии Δ^* принимается:

- при односторонней коррозии замкнутых форм профилей $\Delta^* = \Delta$;
- при двухсторонней коррозии открытых профилей (двутавров, швеллеров, уголков и т.п.) $\Delta^* = \Delta/2$, где Δ уменьшение толщины элемента, равное разнице между номинальной и фактической толщиной элемента.

Сжатые сплошностенчатые элементы стальных конструкций, имеющие общие искривления, следует рассчитывать, как внецентренно-сжатые по формуле:

$$\frac{N}{\varphi_{e}A} \le R_{yo} \cdot \gamma_{c}. \tag{2.3}$$

Отличие работы искривленных стержней от внецентренно-сжатых (рис. 2.1) можно учитывать умножением стрелки перехода от максимальной стрелки искривления к эквивалентному эксцентриситету, принимая $m_{ef} = k \cdot \eta \cdot m_f$, где $m_f = f_o \cdot A/W$.

 Таблица 2.1

 Коэффициент изменения момента сопротивления при коррозии

	Швеллеры			Двутавры	
Номер профиля	k_{SWx}	k_{SWy}	Номер профиля	k_{SWx}	k_{SWy}
12	0,29	0,27	20	0,26	0,24
14	0,28	0,26	22	0,25	0,23
16	0,27	0,25	24	0,24	0,21
18	0,26	0,25	27	0,23	0,2
20	0,25	0,24	27a	0,22	0,2
22	0,24	0,23	30	0,22	0,2
24	0,23	0,22	36	0,18	0,16
27	0,22	0,2	40	0,17	0,15
30	0,21	0,19	50	0,15	0,13
36	0,18	0,17	60	0,13	0,11

Коэффициент k вычисляется по формуле:

$$k = 0.82 + 0.1 \frac{\sqrt{\eta \cdot m_f}}{\bar{\lambda}},$$
 (2.4)

где $\bar{\lambda}$ — условная гибкость стержня в плоскости искривления; η — коэффициент влияния формы поперечного сечения, принимаемый по табл. Д.2 СП 16.13330.2017.

Стрелка искривления стрежня в ненагруженном состоянии определяется по формуле:

$$f_o = \varphi_o \cdot f_{\text{MCK}}, \tag{2.5}$$

где $f_{\text{иск}}^{\cdot}$ — стрелка искривления стрежня, замеренная в нагруженном состоянии конструкции силой N_o^{\cdot} (рис. 2.1a); φ_o — коэффициент, позволяющий определить искривление стойки в ненагруженном состоянии (рис. 2.1б), который вычисляется по формуле:

$$\varphi_o = 1 - 0.1\bar{\lambda}^2 \cdot \sigma \hat{R}_{yo}, \qquad (2.6)$$

где σ ` = N_o ' / $A_{ef} \leq \pi^2 E/\lambda^2$ — напряжения в стержне в момент замера стрелки f`_{иск}; R_{yo} — расчетное сопротивление стали; A_{ef} — площадь сечения с учетом ослабления или коррозийного износа.

Если усиление в стрежне N_o в момент замера стрелки определить невозможно, следует принимать $\varphi_o = 1$.

Переход к эквивалентному эксцентриситету (2.16, в) осуществляется по формуле:

$$e_{\text{\tiny 3KB}} = k \cdot f_o. \tag{2.7}$$

Величина приведенного относительного эксцентриситета определяется следующим образом:

$$m_{ef} = \eta \frac{e_{_{3KB}} \cdot A}{W_c}, \tag{2.8}$$

где W_c — момент сопротивления сечения для наиболее сложного волокна.

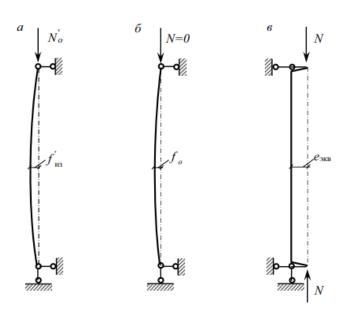


Рис. 2.1. Сжатый стержень с общим искривлением: а — нагруженный; б — ненагруженный; в — эквивалентный внецентренно-сжатый стержень

Пример 1

Проверить устойчивость стальной сжатой колонны из двутавра № 36 по ГОСТ 8239-72*: A=61,9 см² ; $W_{\chi}=743$ см³; $i_{\chi}=14.7$ см с расчетной длиной $L_{\rm pac}=14.7$

560 см. Расчетная нагрузка N=580 кH. Нагрузка от собственного веса поддерживающих конструкций, при которых выполнялись обмеры, $N_o = 410$ кH. Материл конструкций имеет расчетное сопротивление $R_{yo} = 200$ Мпа.

При обследовании обнаружено общее искривление стойки со стрелкой $f_{\text{иск}}^*$ = 4,9 см и коррозийный износ, равномерный по всему поперечному сечению, с глубиной проникновения коррозии $\Delta^* = 1,73$ мм.

Решение

Находим расчетные геометрические характеристики сечения стойки в равномерном коррозийном износе по формулам (2.1) и (2.2):

$$A_{ef} = \left(1 - \Delta^* \frac{4}{t \div d}\right) A = \left(1 - 1,73 \frac{4}{7,5 \div 12,3}\right) 61,9 = 40,266 \text{ cm}^2;$$

$$W_{ef} = (1 - k_{SW} \cdot \Delta^*) W_{\rm x} = 743,0 \; (1 - 0,18 \cdot 1,73) = 511,63 \text{ cm}^3.$$

Здесь коэффициент k_{SW} принят по табл. 2.1.

Определяем приведенное значение радиуса инерции:

$$i_{ef} = \sqrt{\frac{W_{ef} \cdot \frac{h}{2}}{A_{ef}}} = \sqrt{\frac{511,63 \cdot 18}{40,266}} = 15,123 \text{ cm}.$$

Вычисляем условную гибкость стойки:

$$\bar{\lambda} = \frac{H}{i_{ef}} \sqrt{\frac{R_{yo}}{E}} = \frac{560}{15,183} \sqrt{\frac{20}{2,05 \cdot 10^4}} = 1,1566.$$

Определяем напряжения в момент замера искривления:

$$\sigma' = \frac{N_o}{A_{ef}} = \frac{410}{40,266} = 10,182 \frac{\kappa H}{\text{cm}^2}.$$

По формуле (2.6) находим значение коэффициента φ_o , который позволяет определить величину стрелки искривления стойки при ненагруженном состоянии:

$$\varphi_o = 1 - 0.1 \frac{\bar{\lambda}^2 \cdot \sigma}{R_{vo}} = 1 - 0.1 \frac{1.1566^2 \cdot 10.182}{20} = 0.93.$$

Следовательно, стрелка искривления в исходном состоянии, согласно формуле (2.5), составит:

$$f_o = \varphi_o \cdot f_{\text{иск}} = 0.93 \cdot 4.9 = 4.56 \text{ см}.$$

Находим относительный эксцентриситет в стойке за счет ее начального искривления:

$$m_{ef} = \frac{f_o \cdot A_{ef}}{W_{ef}} = \frac{4,56 \cdot 40,266}{511,63} = 0,359.$$

Находим коэффициент влияния формулы сечения η по табл. Д.2 СП 16.13330.2017. Для двутаврового сечения стойки коэффициент η определится:

$$\eta = (1,75 - 0,1 m_{ef}) - 0,02 (5 - m_f) \bar{\lambda} =$$

$$= (1,75 - 0,1 \cdot 0,359) - 0,02 \cdot (5 - 0,359) \cdot 1,1566 = 1,606.$$

Вычисляем коэффициент перехода от стрелки искривления к эквивалентному эксцентриситету по формуле (2.4):

$$k = 0.82 + 0.1 \frac{\sqrt{\eta \cdot m_f}}{\bar{\lambda}} = 0.82 + 0.1 \sqrt{\frac{1,606 \cdot 0.359}{1,1566}} = 0.8856,$$

тогда величина эквивалентного эксцентриситета равно:

$$c_{2KB} = k \cdot f_0 = 0.8856 \cdot 4.56 = 4.04 \text{ cm}.$$

Находим величину приведенного относительного эксцентриситета:

$$m_{ef} = \eta \frac{A_{ef} \cdot c_{_{3KB}}}{W_{ef}} = 1,606 \frac{40,266 \cdot 4,04}{511,63} = 0,511.$$

По табл. Д,3 СП 16.13330.2017 находим коэффициент продольного изгиба, который для $\lambda=1,1566$ и $m_{ef}=0,511$ составит: $\varphi=0,765$.

Проверку внецентренно-сжатой стойки производим по формуле:

$$\frac{N}{\varphi_e \cdot A_{ef}} = \frac{580}{0,765 \cdot 40,266} = 18,83 \le R_{yo} \cdot \gamma_c = 20 \cdot 0,9 = 18 \frac{\kappa H}{cm^2}.$$

Условие не выполняется, требуется усиление конструкции.

Занятие № 3

ПОВЕРОЧНЫЙ РАСЧЕТ РАСКОСА ФЕРМЫ С ПОГИБЬЮ

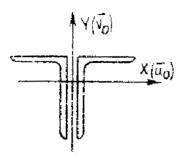
Расчет на устойчивость сжатых стержней из двух спаренных уголков, расположенных в тавр и имеющих искривление в двух плоскостях, следует выполнять по формуле:

$$N/\varphi_{uv}A_0 \le R_{yo}, \tag{3.1}$$

где ϕ_{uv} – коэффициент снижения несущей способности, определяемый по табл. 3.1–3.3 в зависимости от условной гибкости в плоскости симметрии сечения

$$\overline{\lambda}_x = l_0 / i_x \sqrt{R_{yo} / E}$$

и условных относительных стрелок искривлений в двух плоскостях


$$\bar{u}_0 = \frac{f_{x0}}{l_0} \sqrt{E/R_{yo}} \qquad \bar{v}_0 = \frac{f_{y0}}{l_0} \sqrt{E/R_{yo}}$$

при этом для элементов решетки ферм (кроме опорных раскосов и опорных стоек) следует учитывать упругое защемление в поясах, принимая в плоскости фермы коэффициент приведения расчетной длины $\mu = 0.8$ и используя данные табл. 3.1.

Не допускается принимать значения коэффициентов ϕ_{uv} больше значений коэффициентов ϕ для центрально-сжатых стержней.

Таблица 3.1 Коэффициент $\phi_{\mu\nu}$ для стержней из равнополочных уголков упругозащемленных в плоскости симметрии и шарнирно закрепленных из этой плоскости

$$(\mu_x = 0.8; \, \mu_y = 1)$$

$\overline{\lambda}_x$	_					φиυ П	ри _ ри р о р	авном				
λ_x	u_0	-0,5	-0,4	-0,3	-0,2	-0,1	0	+0,1	+0,2	-0,3	-0,4	-0,5
	0,05	830	854	880	910	938	945	907	944	789	740	598
	0,1	818	841	868	894	923	936	908	944	789	741	598
0.5	0,2	791	819	839	865	890	903	914	945	790	742	699
0,5	0,3	767	789	815	839	881	871	911	850	792	743	700
	0,4	748	768	787	811	829	845	877	856	796	745	701
	0,5	723	744	760	782	806	812	844	872	801	749	704
	0,05	674	713	756	804	854	871	809	707	629	566	515
	0,1	657	693	732	777	826	852	811	708	630	566	515
1	0,2	623	656	691	727	768	789	825	712	631	568	516
1	0,3	593	620	652	684	718	735	793	721	636	571	518
	0,4	565	592	618	645	674	689	737	745	645	575	521
	0,5	543	564	587	611	635	648	688	717	654	581	525
	0,05	546	590	640	699	772	799	715	591	506	444	396
	0,1	528	567	612	664	725	759	717	593	507	445	396
1,5	0,2	493	525	562	602	647	672	755	598	510	446	397
1,5	0,3	462	491	520	552	587	606	654	610	515	449	400
	0,4	435	459	484	510	538	553	586	633	523	454	403
	0,5	411	431	452	474	494	506	534	568	542	460	406
	0,05	443	478	541	604	638	704	623	494	413	357	315
	0,1	428	468	512	561	627	646	626	496	414	357	315
	0,2	395	427	461	498	541	562	647	502	417	359	316
2	0,3	367	383	420	448	480	497	552	515	422	362	318
	0,4	343	364	386	408	423	445	475	511	431	366	321
	0,5	321	399	357	375	392	402	420	440	460	373	325

0,05 360 406 457 517 596 643 526 413 343 293 225	_	_	$\phi_{ m uv}$ при $\stackrel{-}{m U}_0$ равном										
2.5 0.05 360 406 437 517 596 643 526 413 343 293 256 415 349 347 348 537 571 542 416 343 293 257 258 20.2 322 351 382 415 445 473 348 422 345 295 258 260 277 295 314 300 352 362 386 436 350 398 260 20.5 259 274 289 303 318 325 341 358 366 306 265 265 265 274 289 303 318 325 341 358 366 306 265	$\overline{\lambda}_x$	u_0	-0,5	-0,4	-0,3	-0,2				+0,2	-0,3	-0,4	-0,5
2.5		0,05					596	643					
2.5			349	387	430	478		571		416	343	293	
A	2.5												
0,4	2,5												
0.5													
0.05													
3.6 0.1 286 322 361 406 450 489 465 351 287 245 215 0.2 266 293 320 349 381 392 457 357 290 294 249 217 0.4 229 245 260 277 287 301 325 338 300 252 219 0.5 213 226 239 251 262 269 284 293 295 255 220 0.05 240 278 325 377 433 482 393 298 244 208 182 0.1 236 269 306 347 392 419 396 299 244 208 182 0.1 236 269 306 347 392 419 396 299 244 208 182 0.2 223 247 271 297 324 338 392 303 246 209 183 0.3 207 225 243 261 275 289 320 312 250 211 184 0.4 193 206 220 234 247 254 272 281 253 213 185 0.5 180 191 201 208 221 226 238 243 243 213 185 0.5 180 191 201 208 221 226 238 243 243 215 186 0.1 197 226 260 291 330 339 355 260 212 180 157 0.1 197 226 260 291 330 335 266 212 180 157 0.2 188 210 233 250 273 319 335 260 212 180 157 0.5 154 163 172 181 190 193 202 206 204 183 160 0.5 154 163 172 181 190 193 202 206 204 183 160 0.5 168 194 229 268 324 343 287 216 182 156 136 0.1 166 191 222 256 290 210 290 221 182 156 136 0.1 166 191 222 256 290 210 290 221 182 156 136 0.1 166 191 222 256 290 210 290 221 182 156 136 0.1 161 180 201 221 240 251 286 224 183 156 137 0.2 161 180 201 221 240 251 286 224 183 156 137 0.3 152 167 181 194 203 214 230 227 185 157 138 0.5 133 142 153 157 164 167 174 177 174 157 138 0.5 133 142 153 157 164 167 174 177 174 157 138 0.5 131 145 158 169 181 184 203 196 161 138 121 0.5 117 124 131 137 144 146 150 154 150 137 120 0.5 104 110 116													
3 0,2 266 293 320 349 381 392 457 357 290 246 215 0,4 229 245 260 277 287 301 325 338 300 252 219 0,5 213 226 239 251 262 269 284 293 295 255 220 0,05 240 278 325 377 433 482 393 298 244 208 182 0,1 236 269 306 347 392 419 396 292 244 208 182 3,5 0,2 223 247 271 297 324 338 392 303 246 209 183 3,5 0,2 231 262 223 247 275 289 320 312 250 211 184 0,5 180 191 2													
3 0,3 247 266 287 507 324 342 374 370 294 249 217 0,5 213 226 239 251 262 269 284 293 295 255 220 0,05 213 226 239 251 262 269 284 293 295 255 220 0,05 240 278 325 377 433 482 393 298 244 208 182 0,0 202 223 247 271 297 324 338 392 303 246 209 183 3,5 0,2 223 247 271 297 324 338 392 303 246 209 183 4 0,2 188 210 203 221 226 238 243 243 215 186 0,1 197 226 26													
0,4 229 245 260 277 287 301 325 338 300 252 219	3												
0,5													
0.05													
3,5 0,1													
3,5													
3.5 0,3 207 225 243 261 275 289 320 312 250 211 184 0,4 193 206 220 234 247 254 272 281 253 213 185 0,5 180 191 201 208 221 226 238 243 243 215 186 0,05 200 231 272 322 379 412 336 255 209 179 157 0,1 197 226 260 291 330 359 339 251 205 179 157 0,3 177 193 208 224 235 248 273 266 214 181 158 0,4 165 177 185 199 212 213 232 237 216 183 159 0,5 154 163 177 181 <th< td=""><td>2.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2.5												
0,4	3,5												
0,5 180 191 201 208 221 226 238 243 243 215 186 0,05 200 231 272 322 379 412 336 255 209 179 157 0,1 197 226 260 291 330 359 339 251 205 179 157 4 0,2 188 210 233 250 273 319 335 260 212 180 157 0,4 165 177 185 199 212 213 232 237 216 183 159 0,5 154 163 172 181 190 193 202 206 204 183 159 0,05 168 194 229 268 324 343 287 216 182 156 136 4,5 0,2 161 180 201				206	220		247	254	272		253	213	
4 0,1 197 226 260 291 330 359 339 251 205 179 157 0,2 188 210 233 250 273 319 335 260 212 180 157 0,3 177 193 208 224 235 248 273 266 214 181 158 0,4 165 177 185 199 212 213 232 237 216 183 159 0,5 154 163 172 181 190 193 202 206 204 183 160 160 170 166 191 222 256 290 210 290 221 182 156 136 136 159 161 180 201 221 240 251 286 224 183 156 137 138 159 150 150 150 150 150 150 150 150 150 150			180	191	201	208	221	226			243	215	
4 0,2 188 210 233 250 273 319 335 260 212 180 157 0,3 177 193 208 224 235 248 273 266 214 181 158 0,4 165 177 185 199 212 213 232 237 216 183 159 0,5 154 163 172 181 190 193 202 206 204 183 160 0,0 166 191 222 256 290 210 290 221 182 156 136 0,1 166 191 222 256 290 210 290 221 182 156 136 0,1 166 180 201 221 240 251 286 224 183 156 137 0,3 152 167 181 194 203 214 230 227 185 157 138 0,4 143 153 164 174 183 188 200 202 185 158 158 138 0,5 133 142 150 157 164 167 174 177 174 157 138 0,5 133 142 150 157 164 167 174 177 174 157 138 138 0,5 133 142 150 157 164 167 174 177 174 157 138 138 0,5 133 142 150 157 164 167 174 177 174 157 138 138 0,5 133 142 150 157 164 167 174 177 174 157 138 138 0,5 133 142 150 157 164 167 174 177 174 157 138 138 0,5 133 142 150 157 164 167 174 177 174 157 138 138 140 141 142 163 190 221 252 268 250 193 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,1 142 163 141 143 152 157 164 171 175 160 138 121 0,4 125 134 143 152 157 164 171 175 160 138 121 0,5 117 124 131 137 144 146 150 154 150 137 121 0,5 117 124 131 137 144 146 150 154 150 137 121 0,5 117 124 131 137 144 146 150 154 150 137 121 0,5 104 110 119 127 134 139 144 152 153 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,5 104 100 135 150 163 169 187 150 125 108 095 0,4 0,4 098 106 113 120 123 129 135 135 135 123 108 096		0,05	200	231	272	322	379	412	336	255	209	179	157
1		0,1	197	226	260	291	330	359	339	251	205	179	157
0,5 177 193 208 224 235 248 275 266 214 181 158 159 0,5 154 163 172 181 190 193 202 206 204 183 160	4	0,2	188	210	233	250	273	319	335	260	212	180	157
0,5 154 163 172 181 190 193 202 206 204 183 160 0,05 168 194 229 268 324 343 287 216 182 156 136 0,1 166 191 222 256 290 210 290 221 182 156 136 0,2 161 180 201 221 240 251 286 224 183 156 137 0,3 152 167 181 194 203 214 230 227 185 157 138 0,4 143 153 164 174 183 188 200 202 185 158 138 0,5 133 142 150 157 164 167 174 177 174 157 173 138 0,5 133 142 163 190 <td< td=""><td>4</td><td>0,3</td><td>177</td><td>193</td><td>208</td><td>224</td><td>235</td><td>248</td><td>273</td><td>266</td><td>214</td><td>181</td><td>158</td></td<>	4	0,3	177	193	208	224	235	248	273	266	214	181	158
4,5 A			165	177	185	199	212	213	232	237	216	183	159
4,5 0,1 0,2 161 180 201 221 240 251 286 224 183 156 137 0,3 152 167 181 194 203 214 230 227 185 157 138 0,4 143 153 164 174 183 188 200 202 185 158 138 0,5 133 142 150 157 164 167 174 177 174 157 138 0,05 143 164 193 233 275 298 248 192 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,2 139 156 175 193 209 218 247 195 160 137 120 0,3 132 145 158 169 181 184 203 196 161 138 121 0,4 125 137 124 131 137 144 146 150 157 168 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,65 104 110 116 121 125 129 134 135 131 120 107 0,05 108 095 0,2 107 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096			154	163	172	181	190		202		204	183	160
4,5 0,2 161 180 201 221 240 251 286 224 183 156 137 38 0,3 152 167 181 194 203 214 230 227 185 157 138 0,4 143 153 164 174 183 188 200 202 185 158 138 0,5 133 142 150 157 164 167 174 177 174 157 138 0,05 133 142 150 157 164 167 174 177 174 157 138 0,05 143 164 193 233 275 298 248 192 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,2 139 156 175 193 209 218 247 195 160 137 120 0,3 132 145 158 169 181 184 203 196 161 138 121 0,4 125 134 143 152 157 164 171 175 160 138 121 0,5 117 124 131 137 144 146 150 154 150 157 168 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,4 110 119 127 134 139 144 145 155 178 170 142 121 107 0,5 104 110 119 127 134 139 144 152 153 144 152 153 140 122 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 144 152 153 140 122 107 0,5 104 110 119 127 134 139 144 152 153 144 155 153 110 107													
5,5 0,3													
5,	4.5	0,2											
5 133 142 150 157 164 167 174 177 174 157 138 0,05 143 164 193 233 275 298 248 192 159 137 120 0,1 142 163 190 221 252 268 250 193 159 137 120 0,2 139 156 175 193 209 218 247 195 160 137 120 0,3 132 145 158 169 181 184 203 196 161 138 121 0,4 125 134 143 152 157 164 171 175 160 138 121 0,5 117 124 131 137 144 146 150 154 150 137 121 4 0,05 124 142 166 198 24	7,5												
5													
5													
5 0,2 139 156 175 193 209 218 247 195 160 137 120 0,3 132 145 158 169 181 184 203 196 161 138 121 0,4 125 134 143 152 157 164 171 175 160 138 121 0,5 117 124 131 137 144 146 150 154 150 137 121 0,05 124 142 166 198 242 255 215 168 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 5,5 0,2 121 136 153 170 184 192 214 171 138 121 107 5,5 0,3 116 128 1													
3 0,3 132 145 158 169 181 184 203 196 161 138 121 0,4 125 134 143 152 157 164 171 175 160 138 121 0,5 117 124 131 137 144 146 150 154 150 137 121 0,05 124 142 166 198 242 255 215 168 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,2 121 136 153 170 184 192 214 171 138 121 107 0,3 116 128 139 150 1													
5,5 0,3	5												
0,5 117 124 131 137 144 146 150 154 150 137 121 0,05 124 142 166 198 242 255 215 168 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,2 121 136 153 170 184 192 214 171 138 121 107 0,3 116 128 139 150 160 165 178 170 142 122 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 116 121 125 129 134 135 131 120 107 6 0,05 108 123 142 167													
5,5 124 142 166 198 242 255 215 168 140 121 107 0,1 123 141 164 192 220 230 217 169 140 121 107 0,2 121 136 153 170 184 192 214 171 138 121 107 0,3 116 128 139 150 160 165 178 170 142 122 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,05 108 123 114 117 209 220 188 149 125 108 095 0,1 108 123 142 167 192 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
5,5 0,1 123 141 164 192 220 230 217 169 140 121 107 0,2 121 136 153 170 184 192 214 171 138 121 107 0,3 116 128 139 150 160 165 178 170 142 122 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,05 108 123 114 117 209 220 188 149 125 108 095 0,1 108 123 142 167 192 205 189 249 125 108 095 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3													
5,5 0,2 121 136 153 170 184 192 214 171 138 121 107 0,3 116 128 139 150 160 165 178 170 142 122 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,05 108 123 114 117 209 220 188 149 125 108 095 0,1 108 123 142 167 192 205 189 249 125 108 095 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3 103 113 124 133 142 146 156 149 126 108 096 0,4		· ·											
6 0,3 116 128 139 150 160 165 178 170 142 122 107 0,4 110 119 127 134 139 144 152 153 140 122 107 0,5 104 110 116 121 125 129 134 135 131 120 107 0,5 108 123 114 117 209 220 188 149 125 108 095 0,1 108 123 142 167 192 205 189 249 125 108 095 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3 103 113 124 133 142 146 156 149 126 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096													
6 0,3 116 128 139 130 160 165 178 170 142 122 107 110 110 119 127 134 139 144 152 153 140 122 107 107 108 123 114 117 125 129 134 135 131 120 107 108 123 114 117 209 220 188 149 125 108 095 108 123 142 167 192 205 189 249 125 108 095 108 103 113 124 133 142 146 156 149 126 108 096 104 098 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 096 106 113 120 123 129 135 135 123 108 106 113 120 123 129 135 135 123 108 106 113 120 123 129 135 135 123 108 106 113 120 123 120	5.5												
0,5 104 110 116 121 125 129 134 135 131 120 107 0,05 108 123 114 117 209 220 188 149 125 108 095 0,1 108 123 142 167 192 205 189 249 125 108 095 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3 103 113 124 133 142 146 156 149 126 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096] 5,5												
6 0,05 108 123 114 117 209 220 188 149 125 108 095 0,1 108 123 142 167 192 205 189 249 125 108 095 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3 103 113 124 133 142 146 156 149 126 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096													
6 0,1 108 123 142 167 192 205 189 249 125 108 095 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3 103 113 124 133 142 146 156 149 126 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096													
6 0,2 107 120 135 150 163 169 187 150 125 108 095 0,3 103 113 124 133 142 146 156 149 126 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096		· ·											
0,3													
0,3 103 113 124 133 142 146 136 149 126 108 096 0,4 098 106 113 120 123 129 135 135 123 108 096	6												
0.5 0.92 0.98 1.04 1.09 1.13 1.15 1.19 1.20 1.16 1.06 0.95													
0,5 0,5 0,5 101 105 115 115 115 110 100 075		0,5	092	098	104	109	113	115	119	120	116	106	095

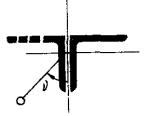
Примечание. Значения коэффициента ϕ_{uv} в таблице увеличены в 1000 раз.

Эквивалентный переход от сечения с местной погибью

(параметры погиби f_{om} , l_{m}) к сечению с краевым вырезом (параметры h_{mm} , l_{mm})

	(параметры D_{ocn} , t_{ocn})												
Длина местного	Параметры выреза		(Стрелка	местной	погиби	$\overline{f}_{\scriptscriptstyle{\mathrm{OM}}}(\overline{f}_{\scriptscriptstyle{\mathrm{OM}}}$	$f_{\text{om}} = f_{\text{om}} / f$	<i>b</i>)				
ослабления погибью $\bar{l}_{\rm M} = l_{\rm M} / b$	$ar{l}_{ ext{och}} = ar{l}_{ ext{och}} / b$ $ar{b}_{ ext{och}} = ar{b}_{ ext{och}} / b$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9			
0.5	$ar{l}_{ ext{oc}_{ ext{I}}}$	0,37	0,32	0,3	0,26	_	_	_	_	_			
0,5	$ar{b}$ осл	0,2	0,4	0,5,	0,6	_	_	_	_	_			
0.1	$ar{l}_{ ext{och}}$	0,71	0,63	0,6	0,72	0,59	0,52	0,54	0,5	0,47			
0,1	$\overline{b}_{ ext{ocn}}$	0,2	0,4	0,5	0,5	0,6	0,7	0,7	0,8	0,9			
1,5	$ar{l}_{ ext{oc}\pi}$	0,94	0,91	0,88	1,07	0,87	0,77	0,8	0,74	0,7			
1,3	$ar{b}_{ ext{ocn}}$	0,2	0,4	0,5	0,5	0,6	0,7	0,7	0,8	0,9			
2	$ar{l}_{ ext{oc}}$	1,57	1,57	158	1,38	1,14	1,26	1,06	0,99	0,94			
2	$ar{b}_{ ext{ocn}}$	0,1	0,3	0,4	0,5	0,6	0,6	0,7	0,8	0,9			
2.5	$ar{l}_{ ext{oc}}$	0,0	1,55	1,77	1,61	1,35	1,52	1,31	1,35	1,25			
2,5	$\overline{b}_{ ext{oca}}$	0,00	0,3	0,4	0,5	0,6	0,6	0,7	0,7	0,8			
3	$ar{l}_{ ext{oc}}$	0,00	0,0	0,3	0,4	0,5	0,5	0,6	0,7	0,7			
3	$ar{b}$ осл	0,0	0,0	2,01	2,19	1,97	2,3	1,84	1,56	1,62			

Таблица 3.3 Коэффициент ${\bf k}_{\rm осл}$ учитывающий влияние краевого выреза на устойчивость шарнирно закрепленного стержня из спаренных уголков


$$(\mu_x = \mu_y = 1)$$

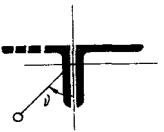
Параметры выреза: $b_{ocn} = 0.36$;

 $l_{ocn} = 0.5b$

$$f_0 = \sqrt{u_o^2 + v_o^2}$$

<i>3</i> 0 ·	, ,	-							
_	£				k_{ocn} при	υ, равном			
λ_x	Jo	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$

 $b_{ocn} = 0.3b$; $l_{ocn} = 0.5b$

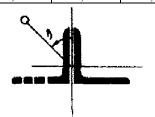

	0,1	0,78	0,84	0,89	0,93	0,93	0,81	0,77	0,73
1	0,3	0,78	0,99	1	1	1	0,98	0,76	0,76
	0,5	0,77	1	1	1	1	1	0,74	0,76
	0,1	0,88	1	1	0,95	0,9	1	0,81	0,84
3	0,3	0,87	1	0,96	1	1	1	0,89	0,85
	0,5	0,85	1	0,94	1	1	1	0,82	0,83

_	f				k_{ocn} при	υ, равном			
λ_x	Jo	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	5π/4	$3\pi/2$	$7\pi/4$
	0,1	0,97	1	0,92	0,95	0,96	0,93	0,9	0,93
5	0,3	0,97	1	0,86	1	1	1	0,86	0,92
	0,5	0,98	1	0,93	1	1	1	0,92	0,91

 $b_{ocn} = 0.3b; l_{ocn} = 0.5b$

	0,1	0,92	0,85	0,79	0,75	0,74	0,75	0,79	0,83
1	0,3	0,99	1	0,89	0,74	0,74	0,74	0,89	1
	0,5	0,99	1	0,93	0,73	0,73	0,73	0,93	1
	0,1	1	1	0,97	0,79	0,84	0,79	0,96	1
3	0,3	0,95	1	1	0,8	0,84	0,8	1	1
	0,5	0,91	1	1	0,84	0,82	0,84	1	1
	0,1	0,98	0,97	0,9	0,85	0,85	0,85	0,9	0,97
5	0,3	1	0,98	0,92	0,9	0,91	0,9	0,95	1
	0,5	0,96	0,99	1	0,91	0,89	0,91	1	0,99

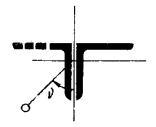
 $b_{ocn} = 0.6b; l_{ocn} = 0.5b$


	0,1	0,58	0,63	0,66	0,71	0,7	0,64	0,58	0,57
1	0,3	0,58	0,73	0,84	1	1	0,74	0,58	0,57
	0,5	0,6	0,84	0,97	1	1	0,81	0,57	0,57
	0,1	0,69	0,84	1	1	1	0,93	0,68	0,69
3	0,3	0,7	1	0,91	1	1	1	0,66	0,66
	0,5	0,71	1	0,8	1	1	1	0,65	0,65
	0,1	0,86	0,93	0,92	0,93	0,91	0,91	0,87	0,82
5	0,3	0,86	1	0,75	0,98	1	0,9	0,66	0,77
	0,5	0,82	1	0,78	0,96	1	1	0,7	0,75

 $b_{ocn} = 0.6b; l_{ocn} = 0.5b$

	0,1	0,71	0,69	0,61	0,57	0,57	0,57	0,61	0,69
1	0,3	0,99	1	0,69	0,56	0,56	0,56	0,69	1
	0,5	0,97	1	0,78	0,57	0,56	0,57	0,78	1
	0,1	1	1	0,79	0,64	0,68	0,64	0,79	1
3	0,3	0,93	1	1	0,68	0,67	0,68	1	1
	0,5	0,82	0,98	1	0,66	0,64	0,66	1	1

$\frac{1}{2}$ f_{o} k_{ocn} при υ , равном										
	λ_x	Jo	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	5π/4	$3\pi/2$	$7\pi/4$
		0,1	0,97	0,95	0,87	0,76	0,75	0,76	0,87	0,95
	5	0,3	0,89	0,94	0,88	0,78	0,74	0,78	0,87	0,94
		0.5	0.82	0.91	1	0.75	0.71	0.75	1	0.91


 $b_{ocn} = 0.6b; l_{ocn} = 0.5b$

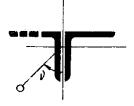
	0,1	0,44	0,47	0,49	0,53	0,53	0,48	0,44	0,43
1	0,3	0,44	0,55	0,65	0,75	0,75	0,56	0,44	0,43
	0,5	0,44	0,63	0,81	1	1	0,62	0,44	0,43
	0,1	0,54	0,67	0,82	0,96	0,91	0,7	0,52	0,53
3	0,3	0,55	0,78	0,84	0,9	1	0,95	0,52	0,52
	0,5	0,56	0,98	0,72	0,87	0,99	0,94	0,5	0,51
	0,1	0,74	0,86	0,9	0,9	0,85	0,96	0,66	0,68
5	0,3	0,71	0,95	0,66	0,87	0,95	0,97	0,51	0,62
	0,5	0,72	1	0,67	0,8	0,93	1	0,56	0,6

 $b_{ocn} = 0.9b; l_{ocn} = 0.5b$

		OCA - 55 -	, OCA - ,					
0,1	0,63	0,6	0,54	0,51	0,5	0,51	0,54	0,6
0,3	0,87	0,93	0,62	0,51	0,51	0,5	0,62	0,88
0,5	0,89	0,94	0,7	0,5	0,51	0,5	0,68	0,9
0,1	0,96	1	0,75	0,58	0,63	0,58	0,75	1
0,3	0,89	1	0,93	0,62	0,62	0,62	0,9	1
0,5	0,81	0,96	1	0,61	0,6	0,61	1	0,89
0,1	0,96	0,95	0,87	0,73	0,71	0,73	0,86	0,95
0,3	0,87	0,92	0,84	0,73	0,71	0,73	0,86	0,94
0,5	0,8	0,88	1	0,7	0,67	0,7	1	0,89
	0,3 0,5 0,1 0,3 0,5 0,1 0,3	0,1 0,63 0,3 0,87 0,5 0,89 0,1 0,96 0,3 0,89 0,5 0,81 0,1 0,96 0,3 0,87	0,1 0,63 0,6 0,3 0,87 0,93 0,5 0,89 0,94 0,1 0,96 1 0,3 0,89 1 0,5 0,81 0,96 0,1 0,96 0,95 0,3 0,87 0,92	0,1 0,63 0,6 0,54 0,3 0,87 0,93 0,62 0,5 0,89 0,94 0,7 0,1 0,96 1 0,75 0,3 0,89 1 0,93 0,5 0,81 0,96 1 0,1 0,96 0,95 0,87 0,3 0,87 0,92 0,84	0,1 0,63 0,6 0,54 0,51 0,3 0,87 0,93 0,62 0,51 0,5 0,89 0,94 0,7 0,5 0,1 0,96 1 0,75 0,58 0,3 0,89 1 0,93 0,62 0,5 0,81 0,96 1 0,61 0,1 0,96 0,95 0,87 0,73 0,3 0,87 0,92 0,84 0,73	0,1 0,63 0,6 0,54 0,51 0,5 0,3 0,87 0,93 0,62 0,51 0,51 0,5 0,89 0,94 0,7 0,5 0,51 0,1 0,96 1 0,75 0,58 0,63 0,3 0,89 1 0,93 0,62 0,62 0,5 0,81 0,96 1 0,61 0,6 0,1 0,96 0,95 0,87 0,73 0,71 0,3 0,87 0,92 0,84 0,73 0,71	0,1 0,63 0,6 0,54 0,51 0,5 0,51 0,3 0,87 0,93 0,62 0,51 0,51 0,5 0,5 0,89 0,94 0,7 0,5 0,51 0,5 0,1 0,96 1 0,75 0,58 0,63 0,58 0,3 0,89 1 0,93 0,62 0,62 0,62 0,5 0,81 0,96 1 0,61 0,6 0,61 0,1 0,96 0,95 0,87 0,73 0,71 0,73 0,3 0,87 0,92 0,84 0,73 0,71 0,73	0,1 0,63 0,6 0,54 0,51 0,5 0,51 0,54 0,3 0,87 0,93 0,62 0,51 0,51 0,5 0,62 0,5 0,89 0,94 0,7 0,5 0,51 0,5 0,68 0,1 0,96 1 0,75 0,58 0,63 0,58 0,75 0,3 0,89 1 0,93 0,62 0,62 0,62 0,9 0,5 0,81 0,96 1 0,61 0,6 0,61 1 0,1 0,96 0,95 0,87 0,73 0,71 0,73 0,86 0,3 0,87 0,92 0,84 0,73 0,71 0,73 0,86

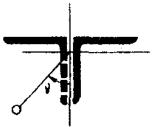
 $f_0 = \sqrt{\frac{-2}{u_o} + \frac{-2}{v_o}}$ Параметры выреза: $b_{ocn} = 0.3b$;

 $l_{ocn} = 1b$

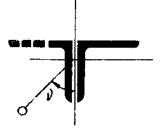

									госл 10
	0,05	0,81	0,88	0,91	0,98	1	0,89	0,8	0,81
	0,1	0,82	0,93	1	1	1	0,93	0,79	0,78
2	0,2	0,82	1	1	0,99	1	1	0,79	0,79
	0,3	0,82	1	0,95	1	1	1	0,78	0,78
	0,5	0,82	1	0,88	1	1	1	0,77	0,77
	0,05	0,88	0,91	1	0,91	0,98	0,94	0,81	0,83
	0,1	0,87	1	1	0,93	0,96	0,92	0,8	0,82
3	0,2	0,88	1	1	0,98	1	1	0,8	0,8
	0,3	0,86	1	0,99	1	1	1	0,79	0,84
	0,5	0,84	1	0,9	1	1	1	0,78	0,82

_	f		k_{ocn} при υ , равном										
λ_x	f_0	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$				
	0,05	0,92	0,92	0,95	0,93	0,93	0,95	0,85	0,87				
	0,1	0,92	0,98	0,97	0,91	0,97	0,88	0,81	0,87				
4	0,2	0,92	1	0,89	0,96	0,98	0,86	0,77	0,83				
	0,3	0,88	1	1	1	1	0,97	0,8	0,82				
	0,5	0,88	1	0,93	1	1	1	0,83	0,89				
	0,05	0,94	0,95	0,96	0,9	0,9	091	094	0,92				
	0,1	0,94	0,97	0,92	0,88	0,92	0,92	0,88	0,9				
5	0,2	0,91	1	0,83	0,95	1	0,93	0,79	0,88				
	0,3	0,91	1	0,83	1	1	0,98	0,73	0,86				
	0,5	0,87	1	0,93	1	0,98	1	0,81	0,89				

 $f_0 = \sqrt{u_o^2 + v_o^2}$ $b_{\text{осл}} = 0.6b;$ $l_{ocn} = 1b$


									госл 10
	0,05	0,6	0,65	0,7	0,77	0,77	0,68	0,6	0,59
	0,1	0,6	0,72	0,8	0,91	0,9	0,75	0,61	0,6
2	0,2	0,61	0,83	1	1	1	0,87	0,61	0,6
	0,3	0,62	0,87	0,92	1	1	0,89	0,61	0,59
	0,5	0,62	1	0,82	0,99	1	0,97	0,59	0,59
	0,05	0,66	0,74	0,82	0,97	0,92	0,75	0,63	0,65
	0,1	0,67	0,84	0,99	0,89	1	0,91	0,65	0,65
3	0,2	0,68	0,96	095	0,94	1	0,94	0,66	0,66
	0,3	0,68	1	0,88	1	1	1	0,66	0,65
	0,5	0,69	1	0,78	0,96	1	1	0,63	0,63
	0,05	0,75	0,83	0,89	0,89	0,9	0,93	0,85	0,72
	0,1	0,75	0,89	0,93	0,93	0,94	0,92	0,69	0,72
4	0,2	0,75	0,99	0,85	0,92	0,91	0,9	0,66	0,71
	0,3	0,76	1	0,79	0,98	1	0,98	0,69	0,69
	0,5	0,77	1	0,76	0,93	0,99	1	0,66	0,68
	0,05	0,83	0,88	0,94	0,9	0,88	0,91	0,85	0,81
	0,1	0,83	0,92	0,91	0,84	0,85	0,92	0,77	0,78
5	0,2	0,82	0,95	077	0,93	0,96	0,83	0,66	0,75
	0,3	0,83	0,95	0,72	0,93	0,94	1	0,62	0,74
	0,5	0,81	1	0,75	0,88	0,92	1	0,68	0,73

 $b_{ocn} = 0.9b;$ $l_{ocn} = 1b$

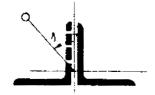

	0,05	0,45	0,48	0,52	0,55	0,56	0,5	0,45	0,44
	0,1	0,46	0,53	0,6	0,70	0,7	0,55	0,46	0,44
2	0,2	0,46	0,62	0,77	1	0,92	0,64	0,46	0,45
	0,3	0,47	0,69	0,78	1	1	0,7	0,46	0,45
	0,5	0,48	0,77	0,79	0,85	0,99	0,74	0,46	0,46
	0,05	0,49	0,58	0,59	0,65	0,73	0,55	0,47	0,49
	0,1	0,51	0,63	0,77	0,95	0,92	0,65	0,49	0,5
3	0,2	0,52	0,77	0,89	0,9	0,96	0,84	0,5	0,5
	0,3	0,52	0,77	0,83	0,93	0,98	0,82	0,5	0,5
	0,5	0,54	0,93	0,69	0,8	0,92	0,92	0,49	0,49

_	£		$k_{oc\pi}$ при υ , равном								
λ_x	f_0	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$		
	0,05	0,59	0,65	0,69	0,89	0,86	0,74	0,51	0,56		
	0,1	0,6	0,73	0,83	0,82	0,84	0,9	0,52	0,57		
4	0,2	0,59	0,85	0,76	0,85	0,83	0,91	0,51	0,56		
	0,3	0,61	0,88	0,76	0,82	0,9	1	0,53	0,54		
	0,5	0,62	0,98	0,66	0,78	0,84	1	0,52	0,54		
	0,05	0,71	0,77	0,9	0,91	0,89	0,93	0,67	0,67		
	0,1	0,69	0,8	0,87	0,84	0,84	0,93	0,6	0,64		
5	0,2	0,68	0,87	0,71	0,84	0,87	0,96	0,51	0,61		
	0,3	0,69	0,89	0,63	0,84	0,85	1	0,49	0,59		
	0,5	0,68	0,95	0,65	0,78	0,83	1	0,54	0,58		

 $b_{ocn} = 0.3b;$ $l_{ocn} = 1b$

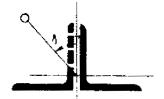
									госл 🖸
	0,05	0,97	0,94	0,81	0,77	0,79	0,77	0,81	0,94
	0,1	0,99	1	0,86	0,78	0,79	0,78	0,86	1
2	0,2	0,97	1	0,95	0,78	0,76	0,78	0,95	1
	0,3	0,96	1	1	0,75	0,78	0,75	1	1
	0,5	0,91	1	0,98	0,74	0,75	0,74	1	1
	0,05	0,98	1	0,86	0,75	0,83	0,75	0,87	0,98
	0,1	0,95	0,97	0,93	0,77	0,82	0,77	0,91	1
3	0,2	0,95	1	1	0,82	0,78	0,82	0,93	0,98
	0,3	0,92	0,94	0,97	0,79	0,78	0,8	1	1
	0,5	0,95	0,93	0,91	0,81	0,81	0,81	0,9	0,94
	0,05	0,95	0,93	0,91	0,81	0,81	0,81	0,9	0,94
	0,1	0,95	0,93	0,92	0,8	0,81	0,81	0,9	0,97
4	0,2	0,94	1	0,92	0,78	0,8	0,78	0,89	0,92
	0,3	0,92	0,99	1	0,82	0,84	0,82	1	1
	0,5	0,89	0,98	1	0,84	0,83	0,84	1	0,99
	0,05	0,95	0,95	0,94	0,87	0,85	0,87	0,94	0,95
	0,1	0,94	0,92	0,87	0,82	0,82	0,82	0,88	0,92
5	0,2	0,91	0,94	0,8	0,83	0,87	0,83	0,77	0,94
	0,3	0,87	0,94	0,82	0,84	0,84	0,84	0,8	0,95
	0,5	0,85	0,95	1	0,86	0,8	0,86	1	0,95

 $b_{ocn} = 0.6b;$ $l_{ocn} = 1b$

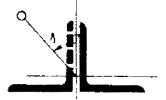

г		0.05	0.55	0.50	0.52	0.50	0.5	0.50	0.52	0.50
		0,05	0,77	0,73	0,63	0,59	0,6	0,59	0,63	0,73
		0,1	1	0,95	0,68	0,59	0,6	0,59	0,68	0,98
	2	0,2	0,97	1	0,77	0,6	0,6	0,6	0,77	1
		0,3	0,95	1	0,86	0,6	0,6	0,6	0,86	0,95
		0,5	0,91	1	0,88	0,59	0,59	0,59	0,88	1

_	£				k_{ocn} при	υ, равном			
λ_x	f_0	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$
	0,05	0,97	1	0,69	0,58	0,65	0,58	0,69	1
	0,1	0,95	1	0,77	0,62	0,66	0,62	0,77	1
3	0,2	0,95	1	0,88	0,66	0,64	0,66	0,86	1
	0,3	0,89	1	0,87	0,65	0,65	0,65	0,86	1
	0,5	0,8	0,96	1	0,64	0,64	0,64	1	0,99
	0,05	0,95	0,92	0,75	0,68	0,68	0,68	0,75	0,92
	0,1	0,95	0,92	0,82	0,68	0,69	0,68	0,8	0,94
4	0,2	0,92	0,97	0,8	0,66	0,67	0,66	0,82	0,97
	0,3	0,87	0,95	0,97	0,71	0,69	0,71	0,99	0,97
	0,5	0,75	0,89	1	0,7	0,67	0,7	1	0,93
	0,05	0,94	0,94	0,89	0,77	0,76	0,77	0,89	0,94
	0,1	0,92	0,91	0,84	0,73	0,73	0,73	0,84	0,92
5	0,2	0,86	0,89	0,78	0,73	0,76	0,73	0,78	0.9
	0,3	0,83	0,88	0,81	0,75	0,73	0,75	0,81	0,89
	0,5	0,77	0,86	1	0,72	0,7	0,72	1	0,86

 $b_{ocn} = 0.9b;$ $l_{ocn} = 1b$

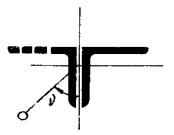

									- ОСЛ — —
	0,05	0,67	0,65	0,56	0,53	0,54	0,53	0,55	0,65
	0,1	0,93	0,81	0,61	0,54	0,54	0,54	0,61	0,82
2	0,2	0,9	0,99	0,69	0,54	0,54	0,54	0,69	0,94
	0,3	0,89	0,97	0,79	0,54	0,54	0,54	0,8	0,94
	0,5	0,87	0,97	0,89	0,54	0,54	0,54	0,86	0,95
	0,05	0,94	0,96	0,63	0,53	0,6	0,53	1,62	0,97
	0,1	0,91	0,95	0,74	0,56	0,61	0,56	0,73	0,94
3	0,2	0,91	1	0,85	0,61	0,59	0,61	0,84	0,99
	0,3	0,88	0,96	0,89	0,6	0,6	0,6	0,83	0,98
	0,5	0,78	0,94	1	0,6	0,59	0,59	0,96	0,96
	0,05	0,95	0,92	0,7	0,64	0,63	0,64	0,7	0,92
	0,1	0,95	0,97	0,77	0,63	0,63	0,63	0,77	0,94
4	0,2	0,89	0,96	0,8	0,62	0,61	0,62	0,8	0,96
	0,3	0,83	0,94	0,94	0,67	0,65	0,67	0,92	0,96
	0,5	0,74	0,91	1	0,65	0,61	0,65	1	0,92
	0,05	0,64	0,94	0,87	0,74	0,72	0,73	0,88	0,94
	0,1	0,9	0,91	0,83	0,7	0,68	0,7	0,83	0,92
5	0,2	0,85	0,88	0,8	0,7	0,72	0,7	0,8	0,9
	0,3	0,82	0,88	0,8	0,72	0,69	0,72	0,8	0,89
	0,5	0,75	0,84	1	0,68	0,65	0,68	1	0,84

 $b_{ocn} = 0.3b;$ $l_{ocn} = 2.0b$


									$\frac{\partial \mathcal{L}_{\mathcal{I}}}{\partial \mathbf{r}} = \mathbf{r}$
	0,05	0,79	0,84	0,91	0,99	1	0,9	0,78	0,76
	0,1	0,8	0,89	0,91	0,99	1	0,96	0,78	0,76
2	0,2	0,79	0,92	0,96	0,99	1	1	0,78	0,76
	0,3	0,8	0,97	0,86	0,99	1	1	0,77	0,75
	0,5	0,8	0,98	0,85	0,98	0,99	0,98	0,77	0,76

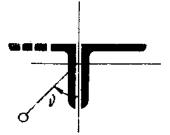
_	£				k_{ocn} при	υ, равном			
λ_x	f_0	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	5π/4	$3\pi/2$	$7\pi/4$
	0,05	0,82	0,88	1	0,89	0,98	0,93	0,79	0,79
	0,1	0,83	0,98	0,99	0,9	0,97	0,94	0,78	0,78
3	0,2	0,83	1	0,96	0,88	0,99	0,98	0,78	0,79
	0,3	0,83	1	0,89	0,86	1	0,96	0,77	0,8
	0,5	0,82	0,98	0,86	0,86	1	0,95	0,76	0,8
	0,05	0,86	0,89	0,92	0,92	0,85	0,94	0,8	0,82
	0,1	0,86	0,97	1	0,9	0,89	0,89	0,78	0,84
4	0,2	0,86	1	0,88	0,92	0,92	0,83	0,74	0,81
	0,3	0,85	0,98	0,88	1	0,99	0,89	0,78	0,8
	0,5	0,83	0,99	0,88	0,98	0,99	1	0,72	0,81
	0,05	0,9	0,91	0,92	0,87	0,87	0,87	0,9	0,87
	0,1	0,9	0,94	0,9	0,83	0,84	0,87	0,87	0,86
5	0,2	0,87	0,9	0,75	0,89	0,98	0,85	0,71	0,84
	0,3	0,87	0,96	0,77	0,95	0,96	0,98	0,69	0,82
	0,5	0,86	0,99	0,87	0,94	0,97	1	0,77	0,82

 $b_{ocn} = 0.6b;$ $l_{ocn} = 2b$

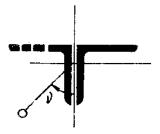

									OCA
	0,05	0,57	0,62	0,66	0,71	0,73	0,65	0,6	0,56
	0,1	0,58	0,68	0,8	0,91	0,89	0,71	0,57	0,57
2	0,2	0,59	0,78	0,91	0,92	1	0,82	0,58	0,57
	0,3	0,59	0,85	0,88	0,98	0,98	0,88	0,58	0,57
	0,5	0,6	1	0,78	0,93	0,98	0,97	0,57	0,57
	0,05	0,61	0,68	0,73	0,83	0,93	0,68	0,58	0,61
	0,1	0,62	0,77	0,97	0,94	1	0,83	0,5	0,62
3	0,2	0,63	0,88	0,97	0,85	0,94	0,96	0,61	0,62
	0,3	0,64	0,97	0,79	0,83	0,98	1	0,61	0,62
	0,5	0,66	0,99	0,74	0,89	0,95	1	0,6	0,61
	0,05	0,68	0,75	0,81	0,85	0,87	0,99	0,61	0,66
	0,1	0,7	0,84	0,92	0,84	0,88	0,84	0,62	0,67
4	0,2	0,7	0,91	0,78	0,84	0,84	0,88	0,61	0,67
	0,3	0,72	0,98	0,78	0,92	0,9	1	0,64	0,66
	0,5	0,74	1	0,71	0,87	0,9	1	0,62	0,65
	0,05	0,77	0,81	0,8	0,95	0,86	0,89	0,75	0,74
	0,1	0,76	0,86	0,89	0,82	0,83	0,88	0,72	0,72
5	0,2	0,76	0,88	0,73	0,84	0,92	0,88	0,61	0,7
	0,3	0,79	0,95	0,7	0,87	0,92	0,9	0,68	0,71
	0,5	0,78	1	0,73	0,82	0,92	1	0,65	0,69

 $b_{ocn} = 0.9b;$ $l_{ocn} = 2b$

	0,05	0,42	0,45	0,48	0,52	0,52	0,47	0,42	0,41
	0,1	0,43	0,5	0,55	0,64	0,64	0,51	0,42	0,42
2	0,2	0,44	0,58	0,74	1	0,91	0,59	0,43	0,43
	0,3	0,44	0,64	0,93	0,94	1	0,65	0,43	0,43
	0,5	0,45	0,74	0,73	0,83	0,94	0,73	0,43	0,43


_	£				k_{ocn} при	υ, равном			
λ_x	f_0	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$
	0,05	0,45	0,5	0,52	0,56	0,65	0,48	0,43	0,44
	0,1	0,46	0,57	0,69	0,97	0,9	0,58	0,44	0,46
3	0,2	0,48	0,69	0,82	0,84	0,93	0,75	0,46	0,47
	0,3	0,49	0,77	0,73	0,86	0,9	0,82	0,46	0,47
	0,5	0,51	0,86	0,65	0,75	0,88	0,84	0,46	0,46
	0,05	0,53	0,58	0,59	0,9	0,87	0,63	0,45	0,51
	0,1	0,53	0,64	0,83	0,81	0,87	0,75	0,47	0,51
4	0,2	0,55	0,75	0,74	0,75	0,79	0,85	0,46	0,51
	0,3	0,57	0,8	0,72	0,8	0,86	0,95	0,48	0,5
	0,5	0,57	0,89	0,63	0,74	0,83	0,93	0,48	0,5
	0,05	0,62	0,67	0,76	0,87	0,88	0,84	0,58	0,59
	0,1	0,62	0,71	0,82	0,8	0,82	0,86	0,53	0,58
5	0,2	0,62	0,79	0,66	0,8	0,85	0,96	0,46	0,55
	0,3	0,63	0,84	0,6	0,79	0,84	0,95	0,44	0,55
	0,5	0,65	0,89	0,61	0,75	0,81	0,9	0,49	0,55

 $b_{ocn} = 0.3b;$ $l_{ocn} = 2b$


	0,05	0,97	0,89	0,82	0,77	0,76	0,77	0,82	0,88
	0,1	0,98	1	0,84	0,75	0,77	0,75	0,85	1
2	0,2	0,97	0,99	0,9	0,74	0,73	0,74	0,89	1
	0,3	0,91	0,97	0,96	0,73	0,74	0,73	0,95	0,99
	0,5	0,91	0,98	0,93	0,73	0,74	0,73	0,91	0,98
	0,05	0,95	0,97	0,85	0,7	0,78	0,7	0,85	0,98
	0,1	0,94	0,96	0,91	0,73	0,78	0,73	0,91	0,97
3	0,2	0,9	0,98	0,96	0,77	0,75	0,77	0,96	1
	0,3	0,88	0,96	0,99	0,76	0,76	0,76	0,97	0,98
	0,5	0,85	0,94	0,9	0,76	0,77	0,76	0,9	0,95
	0,05	0,91	0,91	0,82	0,76	0,78	0,76	0,81	0,91
	0,1	0,9	0,92	0,91	0,76	0,77	0,76	0,91	0,92
4	0,2	0,89	0,91	0,84	0,75	0,74	0,75	0,85	0,92
	0,3	0,87	0,9	0,93	0,8	0,79	0,8	0,63	0,89
	0,5	0,83	0,9	1	0,78	0,77	0,78	1	0,91
	0,05	0,9	0,91	0,88	0,81	0,81	0,81	0,87	0,91
	0,1	0,9	0,88	0,83	0,78	0,78	0,78	0,84	0,89
5	0,2	0,86	0,87	0,78	0,8	0,83	0,8	0,79	0,88
	0,3	0,84	0,87	0,8	0,81	0,81	0,81	0,8	0,88
	0,5	0,82	0,88	0,98	0,78	0,8	0,8	0,99	0,89

_	£				k_{ocn} при	υ, равном			
λ_x	Jo	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$

 $b_{ocn} = 0.6b;$ $l_{ocn} = 2b$

									• осл — •
	0,05	0,73	0,7	0,6	0,56	0,57	0,56	0,6	0,7
	0,1	0,97	0,9	0,65	0,57	0,57	0,57	0,65	0,92
2	0,2	0,93	1	0,74	0,57	0,58	0,58	0,74	0,97
	0,3	0,9	0,97	0,87	0,57	0,59	0,57	0,86	0,95
	0,5	0,87	0,94	0,9	0,58	0,57	0,58	0,88	0,98
	0,05	0,96	0,95	0,64	0,55	0,61	0,54	0,63	0,89
	0,1	0,93	0,96	0,74	0,57	0,63	0,57	0,74	0,87
3	0,2	0,89	0,96	0,83	0,63	0,61	0,61	0,83	1
	0,3	0,85	0,95	0,89	0,63	0,62	0,63	0,89	0,97
	0,5	0,75	0,9	0,9	0,62	0,61	0,62	0,79	0,86
	0,05	0,91	0,89	0,67	0,63	0,62	0,63	0,67	0,89
	0,1	0,89	0,9	0,76	0,63	0,63	0,63	0,75	0,92
4	0,2	0,88	0,94	0,79	0,62	0,62	0,62	0,8	0,91
	0,3	0,78	0,85	0,85	0,68	0,68	0,68	0,82	0,87
	0,5	0,72	0,85	0,91	0,66	0,65	0,66	0,91	0,87
	0,05	0,87	0,88	0,84	0,7	0,69	0,7	0,76	0,89
	0,1	0,86	0,88	0,8	0,68	0,67	0,68	0,8	0,88
5	0,2	0,84	0,84	0,78	0,7	0,72	0,7	0,76	0,84
	0,3	0,78	0,82	0,78	0,72	0,71	0,72	0,74	0,82
	0,5	0,72	0,78	0,98	0,7	0,67	0,7	0,98	0,8

 $b_{ocn} = 0.9b;$ $l_{ocn} = 2b$

	0,05	0,65	0,62	0,54	0,51	0,51	0,51	0,54	0,62
	0,1	0,91	0,8	0,58	0,52	0,52	0,52	0,58	0,8
2	0,2	0,91	0,94	0,67	0,52	0,53	0,52	0,67	0,9
	0,3	0,9	0,92	0,78	0,53	0,53	0,53	0,78	0,9
	0,5	0,86	0,91	0,77	0,53	0,53	0,52	0,8	0,92
	0,05	0,93	0,97	0,58	0,51	0,57	0,5	0,58	0,92
	0,1	0,91	0,93	0,67	0,53	0,58	0,53	0,66	0,93
3	0,2	0,88	0,94	0,85	0,59	0,56	0,59	0,85	0,94
	0,3	0,85	0,92	0,79	0,59	0,58	0,58	0,84	0,93
	0,5	0,74	0,89	0,74	0,58	0,57	0,57	0,81	0,91
	0,05	0,91	0,89	0,63	0,59	0,59	0,59	0,63	0,89
	0,1	0,89	0,9	0,73	0,59	0,6	0,59	0,73	0,9
4	0,2	0,88	0,93	0,77	0,59	0,59	0,59	0,77	0,9
	0,3	0,77	0,85	0,81	0,63	0,62	0,63	0,79	0,87
	0,5	0,7	0,83	0,92	0,62	0,6	0,62	0,96	0,87

_	£	$k_{oc\pi}$ при ee , равном									
λ_x	Jo	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$		
	0,05	0,87	0,88	0,78	0,69	0,67	0,69	0,69	0,89		
	0,1	0,86	0,88	0,79	0,65	0,65	0,65	0,65	0,88		
5	0,2	0,84	0,84	0,75	0,66	0,67	0,66	0,66	0,84		
	0,3	0,77	0,82	0,76	0,67	0,67	0,67	0,67	0,82		
	0,5	0,7	0,78	0,98	0,66	0,62	0,66	0,97	0,8		

Проверку устойчивости стержней из спаренных равнополочных уголков, имеющих кроме пространственного искривления оси еще и местные дефекты в виде вырезов или локальных погибей полок, для случая $\mu_x = \mu_y = 1$ рекомендуется выполнять по формуле

$$\frac{N}{\varphi_{vv}k_{cov}A_0} \le R_{yo}\gamma_c, \tag{2}$$

где ϕ_{uv} - коэффициент, определяемый по табл. 3.1; k_{ocn} - коэффициент, учитывающий влияние местного выреза полки, принимаемый равным; $k_{ocn}=1$ - если вырез расположен на концевом участке стержня (в пределах узловой фасонки); по табл. 3.3. — если вырез расположен в пределах средней трети длины стержня; по интерполяции — в прочих случаях; A_0 — площадь неослабленного сечения. Для стержней, не имеющих местных дефектов и повреждений, следует считать $k_{ocn}=1$.

Учет влияния местного дефекта в виде локального искривления полок осуществляется путем перехода к эквивалентному вырезу с параметрами l_{ocn} и b_{ocn} , определяемыми по погиби l_m и f_{om} (по табл. 3.2).

Пример 1

Раскос фермы (неопорный) длиной 226 см изготовлен из спаренных уголков 75×75×6. При обследовании фермы обнаружены искривления $f_{u3,x} = 2,5$ см и $f_{u3,y} = -1,5$ см, которые ввиду малости напряжения и при замере стрелок принимаем равными f_{x0} и f_{y0} .

Кроме того, обследованиями обнаружена локальная погибь полки с параметрами (рис. 3.1) $l_{\scriptscriptstyle M}=20$ см, $l_{\scriptscriptstyle {\rm OM}}=2,8$ см, расположенная примерно посередине длины. Расчетная нагрузка N=95 кH, расчетное сопротивление $R_{\scriptscriptstyle {\rm VO}}=210$ МПа.

Безразмерные относительные стрелки искривления

$$\overline{u}_0 = \frac{2.5}{226 \cdot 0.8} \sqrt{\frac{2.06 \cdot 10^5}{210}} = 0.44 \; ; \; \upsilon_0 = \frac{-1.5}{226} \sqrt{\frac{2.06 \cdot 10^5}{210}} = -0.21$$

Условная гибкость в плоскости симметрии

$$\overline{\lambda}_x = \frac{226 \cdot 0.8}{2.3} \sqrt{210/2.1 \cdot 10^5} = 2.48.$$

Для найденных значений \overline{u}_0 , $\overline{\mathcal{U}}_0$ и $\overline{\lambda}_x$ по табл. 3.1 ($\mu_x=0.8;~\mu_y=1$) определяем $\phi_{uv}=0.351.$

Используя данные о безразмерной величине местной погиби $\overline{f}_{_{\mathrm{OM}}}=2,8/7,5=0,37$; $\overline{l}_{_{\mathrm{M}}}=20/7,5=2,66$ по табл. 3.2 определяем эквивалентные размеры краевого выреза $l_{_{\mathrm{OCR}}}=1,72\cdot7,5=12,9$ см; $b_{_{\mathrm{OCR}}}=0,51\cdot7,5=3,8$ см.

Определяем угол v направления суммарной погиби tg v=2,5/1,5=1,67; $v=58^\circ=0,32\pi,$ и ее величину $\overline{f}_0=\sqrt{0,44^2+0,21^2}=0,49$. По табл. 3.3 определяем $k_{ocn}=0,77$.

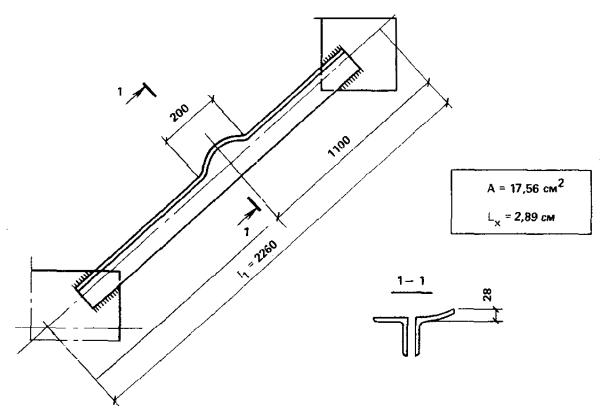


Рис. 3.1. К расчету раскоса фермы с погибью

Проверка по формуле (3.2):

$$\frac{N}{\varphi_{\scriptscriptstyle uv} k_{\scriptscriptstyle \text{осл}} A_0} \leq R_{\scriptscriptstyle yo} \gamma_{\scriptscriptstyle c} = 95/0, 35 \cdot 0, 77 \cdot 17, 56 = 20, 2 \text{ кH/cm}^2 < 210 \text{ МПа}$$

показывает, что элемент может быть оставлен без усиления.

Занятие № 4

УСИЛЕНИЕ ИЗГИБАЕМОГО ЭЛЕМЕНТА

В данной задаче рассматривается грузоподъёмная траверса, в которой в возникла необходимость процессе ee эксплуатации ПО увеличению грузоподъёмности данной траверсы и в данной задачи предлагаются способы расчета ee И мероприятия ПО усилению данной траверсы на новые эксплуатационные нагрузки.

Пример 1

Рассматривается траверса грузоподъёмностью 3 т, работающая на изгиб (рис. 4.1).

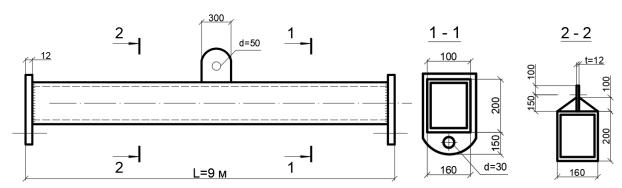


Рис. 4.1. Геометрические параметры траверсы

Данная траверса изготавливается из стали класса C275, сечение длиной 9 м. Из гнутого замкнутого профиля 200х160х8 мм. Геометрические характеристики профиля:

- площадь сечения - A = 55,4 см 2 ; - момент сопротивления - $W_x = 319,1$ см 3 ; - $W_y = 281$ см 3 ; - радиус инерции - $i_x = 7,61$ см; - $I_y = 6,39$ см; - Вес профиля - G = 43,2 кг/м. - масса траверсы равна - $G_{Tp} = 0,41$ т; - $G_{Tp} = 3$ т.

Расчетная нагрузка на траверсу:

$$P = G_{\rm rp} \cdot \gamma_n \cdot \gamma_0 + G_{\rm rp} = 0.41 \cdot 1.1 \cdot 1.1 + 3 = 3.496$$
 т,

где $\gamma_n - 1,1$ – коэффициент надежности по ответственности; $\gamma_0 - 1,1$ – коэффициент динамичности, согласно СП 20.13330.2016.

Максимальный изгибающий момент равен:

$$M = \frac{P \cdot L}{4} = \frac{3,496 \cdot 9}{4} = 7,866 \text{ T} \cdot \text{M},$$

где Р – расчетная нагрузка на траверсу.

Несущая способность траверсы:

$$G = \frac{M}{W_x} = \frac{786600}{319,1} = 2470 < R_y = 2750 \frac{\text{K}\Gamma}{\text{cm}^2},$$

где M – максимальный изгибающий момент; W – момент сопротивления.

Прочность траверсы грузоподъёмностью 3 т не обеспечена.

По новым условиям эксплуатации требуется увеличить грузоподъёмность до 6 тонн.

Следовательно, требуется ее усиление.

Усиление выполняем методом увеличения сечения путем приварки с двух сторон прокатных швеллеров (рис. 4.2).

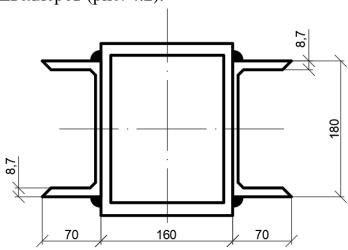


Рис. 4.2. Схема усиления траверсы

Характеристики профиля:

Швеллера принимаем № 18 по ГОСТ 8240-89

- площадь сечения A = 20,7 cm²;
- момент сопротивления $W_x = 121$ см³;
- масса профиля q = 16,3 кг/м.

Момент инерции усиленного сечения:

$$W_{yc} = W_x + W_{x \text{ IIIB.}} = 319,1 + 2 \cdot 121 = 561,1 \text{ cm}^3.$$

Нагрузка при грузоподъёмности 6 тонн:

$$P = G_{\text{гр}} \cdot \gamma_n \cdot \gamma_0 + G_{\text{гр}} = 0.703 + 6 = 6.703 \text{ т.}$$

Изгибающий момент при траверсе грузоподъёмностью 6 тонн:

$$M = \frac{P \cdot l}{4} = \frac{6,703 \cdot 9}{4} = 15,082 \text{ T} \cdot M = 1508200 \frac{K\Gamma}{CM}.$$

Напряжение в усиленной траверсе:

$$G = \frac{M}{W_{\text{vc}}} = \frac{1508200}{561,1} = 268,8 < R_y = 2750 \frac{\text{K}\Gamma}{\text{cm}^2}.$$

Таким образом, прочность усиленной траверсы грузоподъёмностью 6 тонн обеспечена.

Приварку усиливающих швеллеров №18 выполняем электродами Э-46 по ГОСТ 9467 катетом 6мм.

Положение сварных швов приведено на (рис. 4.3).

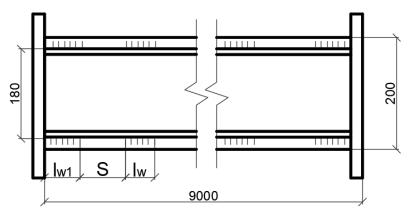


Рис. 4.3. Положение прерывистых швов

При конструировании прерывистых сварных швов, согласно СП 16.13330.2016, необходимо учитывать следующие требования.

- 1. Расстояние ε между участками сварных швов (рис. 4.3), не должно превышать одного из значений: 200 мм, $12^{t_{\min}}$ в сжатом элементе (t_{\min} толщина самого тонкого из соединяемых элементов), $16^{t_{\min}}$ в растянутом элементе.
- 2. При наложении прерывистого шва следует предусматривать шов по концам соединяемых частей элементов; длина ${}^{l}_{w1}$ этого шва в элементах составного сечения из пластин должна быть не менее $0,75\,^b$, где ${}^b-$ ширина более узкой из соединяемых пластин.

Для снижения расхода стали выполняем усиливающие швеллера не на всю длину траверсы. Длину усиливающего элемента определяем из следующего условия равновесия моментов в точке 1 (рис. 4.4a).

Прочность исходной траверсы в точке 1:

$$M = W_x \cdot R_y$$
.

Из условия равновесия моментов M и M_1 в точке 1 получаем:

$$M = M_1 = R \cdot x = W_x \cdot R_y.$$

Следовательно,

$$x = \frac{W_x \cdot R_y}{R}$$

$$R = \frac{P}{2} = \frac{6,703}{2} = 3,352 \text{ т} - \text{нагрузка на крайней подвеске.}$$

$$X = \frac{780600}{3352} = 2330 \text{ cm};$$

Длину усиливающего швеллера № 18 принимаем 4,34 м.

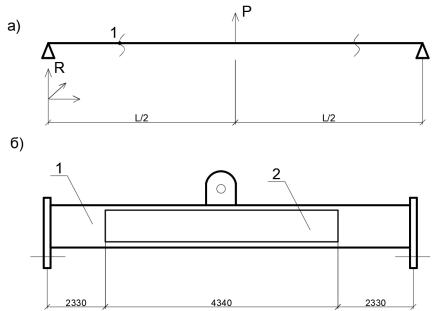


Рис. 4.4. Схема усиления траверсы: а) расчетная схема; б) усиленный элемент; 1 – исходная траверса; 2 – усиливающий элемент из прокатного швеллера

Занятие № 5

РАСЧЕТ УСИЛЕНИЯ ПО КРИТЕРИЮ КРАЕВОЙ ТЕКУЧЕСТИ

Расчет усиленных стальных конструкций ведется по методу предельных состояний. Основная цель расчета — обеспечить прочность и устойчивость конструкций, а также ограничить их декоративность. Местная и общая устойчивость изгибаемых элементов обеспечивается конструктивными мероприятиями.

Расчет по первому предельному состоянию выполняется на силовые воздействия, вызванные обобщенной начальной нагрузкой до усиления q^{oc} и расчетной добавочной нагрузкой Δq , приложенная после усиления. Полная обобщенная нагрузка составит: $q = q^{\text{oc}} + \Delta q$.

Расчет по второму предельному состоянию выполняется на силовые воздействия, вызванные начально нормальной нагрузкой $q_{\rm H}^{\rm oc}$ и нормальной добавочной нагрузкой $\Delta q_{\rm H}$. В данном случае полная обобщенная нормативная нагрузка составит: $q_{\rm H}=q_{\rm H}^{\rm oc}+\Delta q_{\rm H}$.

Расчетная схема должна отражать как можно точнее и полнее реальные условия работы конструкции и то ее фактическое состояние, которое установлено данными обследований. В необходимых случаях следует выполнять расчет с использованием нескольких вариантов расчетных схем и распределения жёсткостей, а также учитывать прогнозируемый износ.

Расчет конструкций, усиливаемых путем увеличения сечений без полной разгрузки, необходимо выполнить:

- на нагрузки, действующие на конструкции во время усиления (начальное нагружение);
- на нагрузки, действующие на конструкции после их усиления, с выбором невыгодных вариантов их сочетания.

Уровень начального нагружения элементов конструкции ограничивается с целью обеспечения их несущей способности в процессе усиления. Этот уровень характеризуется коэффициентом β_o , представляющим собой абсолютную величину отношения наибольшего напряжения в усиливаемом элементе в момент усиления к его расчетному сопротивлению ($\beta_o = |\sigma_{o.max}/R_{yo}|$). В общем случае сжатия (растяжения) с изгибом значения σ_o определяются формулой

$$\sigma_{o} = \frac{N_{0}}{A_{on}} \pm \frac{M_{0x}}{I_{ox}} y \pm \frac{M_{0y}}{I_{oy}} x,$$

где N_0 , M_{0x} , M_{0y} — продольная сила и изгибающие моменты в наиболее нагруженном сечении элемента.

При расчете на устойчивость и деформативность следует учитывать начальные и дополнительные деформации, возникающие на стадии усиления. Искривления от сварки при проверке устойчивости сжатых и внецентренно-сжатых элементов, а также работающих на сжатие с изгибом, допускается учитывать введением дополнительного коэффициента условий работы $\gamma_c = 0.8$.

При расчете на прочность и деформативность коэффициенты условий работ принимаются в соответствии с указаниями разд. 4.3 СП 16.13330.2017. В расчетах на общую устойчивость $\gamma_{\rm c}=0.9$, если только в табл. 1 СП 16.13330.2017 не определено меньшее значение $\gamma_{\rm c}$.

Коэффициент надежности по назначению γ_n принимается согласно Правил учета степени ответственности зданий и сооружений при проектировании конструкций. Для зданий и сооружений III класса ответственности на стадии, предшествующей началу работ по усилению (стадия A), и в период выполнения работ по усилению (стадия Б), допускается принимать $\gamma_n = 0.8$.

В зависимости от условий работы все усиливаемые несущие элементы стальных конструкций разделены на четыре класса, отличающие нормой допустимых предельных пластических деформаций.

І. Сварные конструкции, работающие в особо тяжелых условиях эксплуатации (подкрановые балки для кранов режима работы 7К, 8К, элементы конструкций бункерных и разгрузочных эстакад, непосредственно воспринимающие нагрузки от подвижных составов). Расчеты прочности элементов условно выполняются в предположении упругой работы стали.

II. Элементы конструкций, непосредственно воспринимающие подвижные, динамические или вибрационные нагрузки и не входящие в группу І. Норма предельных (лимитированных пластических деформаций: $e_{p,lim} = 0,001$.

- III. Элементы конструкций, работающие при статических нагрузках, кроме элементов, относящихся к классу IV, $e_{p,lim}=0{,}002$.
- IV. Элементы конструкций, работающие при статических нагрузках и удовлетворяющих требованиям пп. 8.4, 8.5 СП 16.13330.2017 по обеспечению общей и местной устойчивости при развитых пластических деформациях, $e_{p,lim}=0,004$.

Расчет усиления сварных конструкций, для которых вводятся достаточно жесткие ограничения на величину $e_{p,lim}$, осуществляется в форме условного использованием расчета критерию текучести упругого ПО краевой c соответствующих редукционных коэффициентов, учитывающих развитие упругопластических деформаций.

Проверка прочности элементов по критерию краевой текучести выполняется по следующим формулам:

– центрально-растянутые или сжатые, симметрично усиленные элементы:

$$\frac{N}{A} \le R_{yo} \cdot \gamma_{c} \cdot \gamma_{N} \,, \tag{5.1}$$

где $N=N_0+\Delta N$; $A=A_0+A_r$; ΔN — усилие в элементе от дополнительной нагрузки, приложенной к конструкции после ее усиления; $A_r=\sum A_n$ — суммарная площадь сечения усиливающих деталей; $\gamma_c=0.9$ — коэффициент условий работы; γ_N — коэффициент, учитывающий уровень и знак начальной осевой силы N_0 ; R_{yo} — определяется по данным заводских сертификатов или по результатам испытаний образцов. Для растянутых и сжатых элементов, усиленных без использования сварки $\gamma_N=0.95$. Для сжатых элементов, усиленных с помощью сварки, $\gamma_N=0.95-0.25$ β_0 , где $\beta_0=\left|\sigma_0/R_{yo}\right|$ — коэффициент, характеризирующий уровень начального нагружения;

– изгибаемые элементы:

$$\frac{M}{W} \le R_{yo} \cdot \gamma_{c} \cdot \gamma_{M},\tag{5.2}$$

где $M = M_0 + \Delta M$; W — момент оправления в расчетном сечении после усиления; ΔM — величина изгибающего момента в расчетном сечении несущего элемента от дополнительной нагрузки, приложенной к конструкции после ее усиления;

- сжато и растянуто-изогнутые элементы:

$$\frac{N}{A} \pm \frac{M_x}{W_x} \pm \frac{M_y}{W_y} \le R_{yo} \cdot \gamma_{\rm c} \cdot \gamma_{\rm M}. \tag{5.3}$$

В формулах (5.2) и (5.3) для несущих элементов зданий и сооружений I класса принимается $\gamma_M=0,95$; для элементов зданий II и III классов – $\gamma_M=1$. При $\frac{N}{A\cdot R_{yo}}\leq 0,6$ значение принимаются равными γ_N ; M_x и M_y — изгибающие соответствующие моменты сопротивления после усиления.

При разделении работы сечения на стадии, условие прочности (5.1) для растянутых элементов конструкций II и III классов сооружений будет иметь вид:

$$\sigma = \frac{N_0}{A_0} + \frac{\Delta N}{A} \le R_{yo} \cdot \gamma_c. \tag{5.4}$$

Требуемая площадь усиливающих деталей определяется:

$$A_r \ge \frac{N - A_0 R_{yo} \cdot \gamma_c}{R_{yo} \cdot \gamma_c - \frac{N_0}{A_0}}.$$
 (5.5)

Для изгибаемых элементов условие прочности (5.2), при разделении на стадии, запишется:

$$\frac{M_0}{W_0} + \frac{\Delta M}{W_{x,o,\pi}} \le R_{yo} \cdot \gamma_c, \tag{5.6}$$

где $W_{x,og} = J_{x,og}/y_{\varphi}^{oc}$; $J_{x,og}$ — момент инерции усиленного сечения относительно нейтральной оси x_{og} , приходящей через новый центр тяжести при несимметричном усилении; $y_{\varphi}^{oc} = y_p(y_c)$ — координата фибрового слоя основного сечения относительно этой же оси. Если напряжения в крайних растянутых и сжатых волокнах основного сечения выравниваются после догружения за счет смещения центра тяжести, то условие (5.6) должно выполняться как для растянутой, так и для сжатой зоны сечения.

При одностороннем усилении несимметричного изгибаемого элемента (рис. 5.1) требуемая площадь сечения A_r для заданной расчётной величины коэффициента асимметрии усиленного сечения α_v находится следующим образом:

$$A_{r} \geq \frac{\alpha_{y}(\alpha_{0}+1)^{2}}{k^{2} \cdot h \cdot \alpha_{y}^{2}(\alpha_{0}+1)} \left(\frac{\Delta M}{R_{yo} \cdot \gamma_{c} - \sigma_{0}} \left[1 - \frac{k(\alpha_{0} - \alpha_{y})}{\alpha_{0}(\alpha_{y}+1)} \right] - W_{0} \right) - A_{0} \frac{\left(\alpha_{0} - \alpha_{y}\right)^{2}}{\alpha_{y}^{2}(\alpha_{0}+1)^{2}},$$
(5.7)

где $\alpha_0 = \frac{y_{o,p}}{y_{o,c}}$ — коэффициент асимметрии основного сечения до его усиления. Значения данного коэффициента обычно ограничиваются интервалом (1....1,4); $\alpha_0 = \frac{y_r}{y_c}$ — коэффициент асимметрии усиленного сечения. Рациональные значения данного коэффициента находятся в диапазоне (0,9.....1,1); y_r — расстояние от центра тяжести усиленного сечения до центра тяжести усиливающей детали (рис. 5.1a); $k = 1 + \frac{t_f}{2h}$ — редукционный коэффициент; t_f — толщина наиболее развитого пояса двутавра.

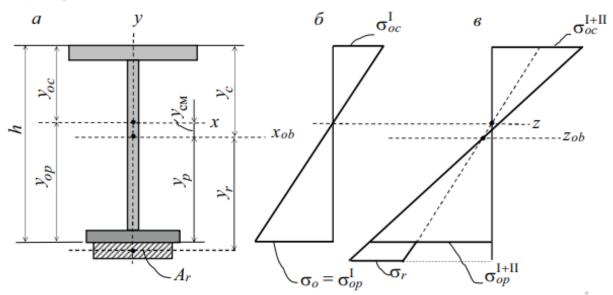


Рис. 5.1. Напряженное состояние двутаврового несимметричного сечения при одностороннем усилении: а – расчетное поперечное сечение; б – эпюра нормальных напряжений до усиления (стадия I); в – эпюра суммарных нормальных напряжений после усиления (стадия I+II)

Значение α_y предварительно можно найти по формуле:

$$\alpha_y = \sqrt{\frac{R_{yo} \cdot \gamma_c - \sigma_0}{\Delta M}} \alpha_0 \tag{5.8}$$

Пример 1

Подобрать сечение усиливающей детали при одностороннем усилении стальной балки, поперечное сечение который показано на рис. 5.2. Усиливается

нижний растянутый пояс с помощью листовой стали, расположенной снаружи (рис. 5.2.). Проверить прочность балки и построить эпюры нормальных напряжений в расчетном сечении до и после усиления.

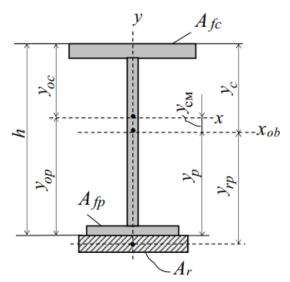


Рис. 5.2. Расчетное сечение балки

Uсходные данные. Расчетный изгибающий момент до усиления составляет: $M_0=70~{\rm kH\cdot m};$ приращение момента — $\Delta M=30~{\rm kH\cdot m}.$ Расчетное сопротивление стали балки $R_{yo}=22$,5 кH/см $^2-3$ лемент усиления, $R_{yr}=22~{\rm kH/cm}^2;$ $\gamma_{\rm c}=0$,9; $\sigma_0=\frac{M_0}{W_0}=17$,23 кH/см 2 .

Геометрические характеристики расчетного сечения приведены в табл. 5.1. Таблица 5.1

Геометрические характеристики расчётного сечения

h	y_{op} b_{fc} t_{fc}	A_{fc}	b_{fp} t_{fp}	A_{fp}	h_w	A_0	I_0	W_0
40	23,65 14 16,35 1,4	19,6	7 1,0	7,0	37,6	64,2	9608,3	406,3

Вариант 1. Расчет по критерию краевой текучести. Из условия прочности (2) находим требуемый момент сопротивления усиленного сечения.

$$W_{\rm Tp} \ge \frac{M_0 + \Delta M}{R_{\gamma o} \cdot \gamma_{\rm c}} = \frac{(70 + 30) \cdot 10^2}{20,25} = 493,8 \text{ cm}^3.$$

Требуемый момент инерции в первом приближении без учета смещения центра тяжести сечения после усиления составит:

$$I_{x,\text{об,тр}} = W_{\text{тр}} \cdot y_{op} = 493,8 \cdot 23,65 = 12846,9 \text{ cm}^4.$$

Исходя из равенства $I_{x,\text{об,тр}} - I_0 = A_r \cdot y_{op}^2$ находим

$$A_r = \frac{I_{x,\text{of,Tp}} - I_0}{y_{on}^2} = \frac{12846,9 - 9608,3}{23,65^2} = 5,79 \text{ cm}^2.$$

Принимаем сечение листа усиливающей детали 84x7 мм. Тогда:

 $A_r = 5,88 \text{ cm}^2; \ A = A_0 + A_r = 64,2 + 5,88 = 70,08 \text{ cm}^2.$ $y_{CM} = \frac{A_r \left(y_{op} + \frac{t_r}{2} \right)}{A} = \frac{5,88(23,65 + 0,35)}{70,08} = 2,01 \text{cm}.$ $y_r = y_{op} + t_r/2 - y_{CM} = 23,65 + 0,35 - 2,01 = 21,99 \text{ cm}.$ $I_{x,06} = I_0 + A_0 \cdot y_{CM}^2 + b_r \cdot \frac{t_r^3}{12} + A_r \cdot y_r^2 =$ $= 9608,3 + 64,2 \cdot 2,01^2 + 8,4 \cdot \frac{0,7^3}{12} + 5,88 \cdot 21,99^2 = 12711 \text{ cm}^4.$ $W = \frac{I_{x,06}}{V_{CM} - V_{CM}} = \frac{12711}{23,65 - 2.01} = 587,38 \text{ cm}^3.$

Проверяем условие прочности (5.2):

$$\frac{M}{W} = \frac{(70+30)10^2}{587.38} = 17,02 \frac{\kappa H}{cm^2} < R_{yo} \cdot \gamma_c = 20,25 \frac{\kappa H}{cm^2}.$$

Условие выполнено.

Фактические напряжения при разделении на стадии составят:

$$\frac{M_0}{W_0} + \frac{\Delta M}{W} = \frac{70 \cdot 10^2}{406,3} + \frac{30 \cdot 10^2}{587,38} = 17,22 + 5,11 = 22,33 > 20,25.$$

Таким образом, проектирование сечения усиливающих деталей на основании условия прочности (5.2) дает заниженные результаты при уровне начального загружения: $\beta = \sigma_0/R_{yo} < 0.8$.

Вариант 2. Расчет усиления при разделении на стадии.

Расчет рассматриваемого выше сечения (рис. 5.2) в данном случае осуществляется на основании формул (5.6) и (5.7).

Коэффициент асимметрии сечения после усиления α_y может находиться в интервале $0.8 \le \alpha_y \le 1.2$. Принимаем: $\alpha_y = 1.0$. Значение редукционного коэффициента при одностороннем усилении составит:

$$k = \frac{h + t_2}{h} = \frac{40 + 1.4}{40} = 1.035.$$

Тогда, на основании формулы (5.7), находим требуемую площадь усиленной детали:

$$A_{r} \geq \frac{\alpha_{y}(\alpha_{0}+1)^{2}}{k^{2} \cdot h \cdot \alpha_{y}^{2}(\alpha_{0}+1)} \left(\frac{\Delta M}{R_{yo} \cdot \gamma_{c} - \sigma_{0}} \left[1 - \frac{k(\alpha_{0} - \alpha_{y})}{\alpha_{0}(\alpha_{y}+1)} \right] - W_{0} \right) - A_{0} \frac{(\alpha_{0} - \alpha_{y})^{2}}{\alpha_{y}^{2}(\alpha_{0}+1)^{2}} = 0$$

$$\begin{split} \frac{1,446\cdot(2,0)^2}{1,035^2\cdot40\cdot1,0^2\cdot2,446} \bigg(&\frac{3000}{20,25-17,23}\cdot\bigg[1-\frac{1,035(1,446-1,0)}{1,446\cdot2,0}\bigg]-406,3\bigg)\\ &-64,2\frac{(1,446-1,0)^2}{1,0^2\cdot2,446^2}=23,648-2,134=21,51\ \text{cm}^2. \end{split}$$

Принимаем размеры сечения усиливающей детали 108x20 мм. Тогда

$$A_r = 21,6 \text{ cm}^2; \ A = A_0 + A_r = 64,2 + 21,6 = 85,8 \text{ cm}^2.$$

$$y_{CM} = \frac{A_r \left(y_{Op} + \frac{t_r}{2}\right)}{A} = \frac{21,6(23,65+1,0)}{85,8} = 6,2 \text{ cm}.$$

$$y_r = y_{Op} + t_r/2 - y_{CM} = 23,65+1,0-6,2 = 18,45 \text{ cm}.$$

$$I_{X,06} = I_0 + A_0 \cdot y_{CM}^2 + b_r \cdot \frac{t_r^3}{12} + A_r \cdot y_r^2 =$$

$$= 9608,3 + 64,2 \cdot 6,2^2 + 10,8 \cdot \frac{2,0^3}{12} + 21,6 \cdot 18,45^2 = 19436 \text{ cm}^4.$$

$$W = \frac{I_{X,06}}{y_{Op} - y_{CM}} = \frac{19436}{23,65-6,2} = 1113,8 \text{ cm}^3.$$

Проверяем условие прочности (5.6):

$$\frac{M_0}{W_0} + \frac{\Delta M(y_{op} - y_{cm})}{I_{x,o6}} = \frac{70 \cdot 10^2}{406,3} + \frac{30 \cdot 10^2 (23,65 - 6,2)}{19436} = 19,92 < 20,25.$$

Условие прочности выполнено.

Находим величину нормальных напряжений в верхних и нижних крайних волокнах усиленного сечения и строим эпюры напряжений до и после усиления (рис. 5.3).

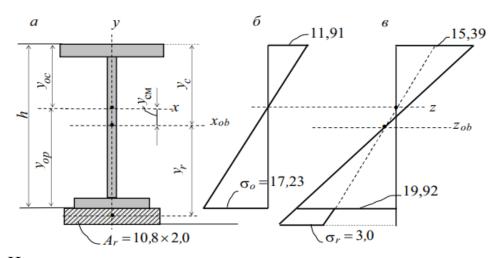


Рис. 5.3. Напряженное состояние расчетного двутаврового несимметричного сечения при одностороннем усилении: а – расчетное поперечное сечение; б – эпюра нормальных напряжений до усиления; в – эпюра суммарных нормальных напряжений после усиления

$$\begin{split} \frac{M_0 \cdot y_{oc}}{I_0} + \frac{\Delta M \cdot y_c}{I_{x.o6}} &= \frac{70 \cdot 10^2 \cdot 16,35}{9608,3} + \frac{30 \cdot 10^2 \cdot 22,55}{19436} = 11,91 + 3,48 \\ &= 15,39 \ \frac{\text{KH}}{\text{CM}^2}. \\ \\ \sigma_r &= \frac{\Delta M \cdot (y_r + t_r/2)}{I_{x.o6}} = \frac{30 \cdot 10^2 \cdot (18,45 + 1,0)}{19436} = 3,0 \frac{\text{KH}}{\text{CM}^2}. \end{split}$$

Занятие № 6

РАСЧЕТ УСИЛЕНИЯ ЦЕНТРАЛЬНО-СЖАТОЙ СТОЙКИ ИЗ РАСЧЕТА НА УСТОЙЧИВОСТЬ

В расчетах усиления центрально-сжатых элементов при разделении на стадии принимается, что усиливающие детали воспринимают только приращение усилий от нагрузок, прикладываемых после усиления. Однако учитывается, что потеря устойчивости происходит в стержне, имеющем новое сечение, поэтому в расчет вводится гибкость стержня после усиления.

К моменту усиления осевое усилие не должно превышать величины

$$N_0 = 0.8 \, R_{yo} \gamma_c \varphi_0 A_0, \tag{6.1}$$

где ϕ_o- коэффициент продольного изгиба стержня до усиления.

Условие устойчивости центрально-сжатого стержня после усиления

$$\frac{N_0}{A_0 \cdot \varphi_{0b}} + \frac{\Delta N}{(A_0 + A_r)\varphi_{0b}} \le R_{yo}\gamma_c, \tag{6.2}$$

где φ_{0b} — коэффициент продольного изгиба усиленного элемента; ΔN — усилие в элементе от дополнительной нагрузки, приложенной к конструкции после ее ния; R_{yo} — определяется по данным заводских сертификатов или по результатам испытаний образцов; $A_r = \sum A_n$ — суммарная площадь сечения усиливающих деталей; $\gamma_{\rm c}$ =0,9 — коэффициент условий работы.

Требуемая площадь элементов усиления определяется:

$$A_{r,\text{Tp}} \ge \frac{N_0 + \Delta N - \varphi_{0b} \cdot A_0 \cdot R_{yo} \cdot \gamma_c}{\varphi_{0b}(R_{yo} \cdot \gamma_c - N_0/A_0)}.$$
(6.3)

Если элементы усиления (усиливающие детали) принимаются в виде прокатного профиля или отношения $\varphi_{0b}/\varphi_0 > 1,15$, то формула (6.3) будет иметь вил:

$$A_{r,\text{Tp}} \ge \frac{k_{\varphi} N_0 + \Delta N - \varphi_{0b} \cdot A_0 \cdot R_{yo} \cdot \gamma_c}{\varphi_{0b} (R_{yo} \cdot \gamma_c - N_0 / A_0)},\tag{6.4}$$

где $k_{\varphi} = \varphi_{0b}/\varphi_0$.

При расчете по формулам (6.3) и (6.4) значение коэффициента φ_{0b} в первом приближении принимают в интервале (0,6....0,7) с последующей корректировкой по действительной гибкой скомпонованного сечения.

Пример 1

Рассчитать усиление центрально-сжатой стойки прямоугольного поперечного сечения (рис. 6.1) из расчета на устойчивость относительно плоскости наименьшего сопротивления изгибу.

Исходные данные. Высота стойки l=8 м. По условию закрепления $\mu=1$. Расчетная сжимающая сила, действующая на стойку до усиления составляет: $N_0=600~\rm kH$. Приращение после усиления $-\Delta N=450~\rm kH$. Расчетное сопротивление стали основного сечения по результатам обследования: $R_{y0}=22,0~\rm kH/cm^2$; элемента усиления $-R_{yr}=23~\rm kH/cm^2$; $\gamma_c=0,9$; $\gamma_N=0,95$. Поперечное сечение сжатой стойки представляет собой два спаренных швеллера № 27 (рис. 6.1a).

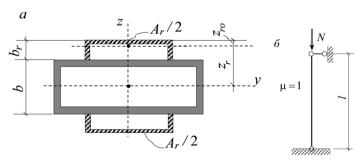


Рис. 6.1. К расчету усиления центрально-сжатой стойки: а – расчетная схема; б – схема расчетного сечения усиленной стойки

Геометрические характеристики основного сечения:

$$A_0 = 70.4 \text{ cm}^2$$
; $I_{vo} = 4073 \text{ cm}^4$.

Решение

1. Находим радиус инерции основного сечения:

$$i_y = \sqrt{\frac{J_{yo}}{A_0}} = \sqrt{\frac{4073}{70,4}} = 7,606 \text{ cm}.$$

2. Определим гибкость стойки до усиления в плоскости наименьшего сопротивления изгиба:

$$\lambda_y = \frac{l_p}{l_y} = \frac{800}{7,606} = 105,2.$$

- 3. По табл. Д.1 СП 16.13330., при $\lambda=105,2$ и $R_{y0}=22,0,$ находим коэффициент продольного изгиба $\varphi_0=0,539.$
- 4. К моменту усиления необходимо проверить уровень начального нагружения:

$$N_0 = 600$$
κH $\leq 0.8 R_{yo} \gamma_c \varphi_0 A_0 = 0.8 \cdot 22.0 \cdot 0.9 \cdot 0.539 \cdot 70.4 = 601.05$ κH.

Условие выполняется.

5. По формуле (6.4) определяем требуемую площадь элементов усиления, которые приняты в виде симметрично расположенных относительно оси у прокатных профилей. Коэффициент продольного изгиба усиленной стойки φ_{0b} в первом приближении принимается равным $\varphi_{0b}=0.7$. Другие необходимые параметры в данном случае принимают значения

$$k_{\varphi} = \varphi_{0b}/\varphi_0 = 0.7/0.539 = 1.3$$
; $R_{yo}\gamma_c = 19.8 \text{ kH/cm}^2$.

Тогда:

$$\begin{split} A_{r,\mathrm{Tp}} \geq \frac{k_{\varphi} N_0 + \Delta N - \varphi_{0b} \cdot A_0 \cdot R_{yo} \cdot \gamma_c}{\varphi_{0b} \left(R_{yo} \cdot \gamma_c - \frac{N_0}{A_0} \right)} = \frac{1,3 \cdot 600 + 450 - 0,7 \cdot 70,4 \cdot 19,8}{0,7(22,0 \cdot 0,9 - \frac{600}{70,4})} \\ = 32,2 \text{ cm}^2. \end{split}$$

Принимаем сечение усиливающих деталей в виде двух швеллеров № 16, симметрично расположенных относительно главной центральной оси у.

6. Определим расчетные характеристики усиленной стойки:

$$A_r = 2 \cdot 18,1 = 36,2 \text{ cm}^2; \ A = A_0 + A_r = 70,4 + 36,2 = 106,6 \text{cm}^2; \ z_{ro}$$

$$= 1,8 \text{ cm}; \ z_r = \frac{b}{2} + b_1 - z_{ro} = \frac{19,0}{2} + 6,4 - 1,8 = 14,1 \text{ cm}; \ I_{y,ob}$$

$$= I_{ob} + 2 \left[I_{yr} + \frac{A_r}{2} \cdot z_r^2 = 4073 + 2(63,3 + 18,1 \cdot 14,1^2) \right]$$

$$= 11396,5 \text{ cm}^2;$$

$$I_{y,ob} = \sqrt{\frac{I_{y0,ob}}{A}} = \sqrt{\frac{11396,5}{106,6}} = 10,34 \text{ cm}; \ \lambda_{y,ob} = \frac{l_p}{i_{y.op}} = \frac{800}{10,34} = 77,37.$$

7. По табл. Д.1 СП 16.13330, при $\lambda = 77,37$ и $R_{y0} = 22,0$, находим коэффициент продольного изгиба усиленной стойки:

$$\varphi_0 = 0.74$$
; $k_{\varphi} = \varphi_{0b}/\varphi_0 = 0.74/0.539 = 1.37$.

8. Определим требуемую площадь элементов усиления во втором приближении:

$$\begin{split} A_{r,\mathrm{Tp}} \geq & \frac{k_{\varphi} N_0 + \Delta N - \varphi_{0b} \cdot A_0 \cdot R_{yo} \cdot \gamma_c}{\varphi_{0b} \left(R_{yo} \cdot \gamma_c - \frac{N_0}{A_0} \right)} = \frac{1,37 \cdot 600 + 450 - 0,7 \cdot 70,4 \cdot 19,8}{0,74 (19,8 - \frac{600}{70,4})} \\ &= 28,82 \ \mathrm{cm}^2. \end{split}$$

Принимаем новое сечение усиливающих деталей в виде двух швеллеров № 14, симметрично расположенных относительно главной центральной оси у (рис. 6.16).

9. Определим расчетные характеристики усиленной стойки:

$$A_r = 2 \cdot 15,6 = 31,2 \text{ cm}^2; \ A = A_0 + A_r = 70,4 + 31,2 = 106,6 \text{cm}^2; \ z_{ro}$$

$$= 1,67 \text{ cm}; \ z_r = \frac{b}{2} + b_1 - z_{ro} = \frac{19,0}{2} + 5,8 - 1,67$$

$$= 13,63 \text{ cm}; \ I_{y,ob} = I_{ob} + 2 \left[I_{yr} + \frac{A_r}{2} \cdot z_r^2 \right]$$

$$= 4073 + 2(45,4 + 15,6 \cdot 13,63^2) = 9960 \text{cm}^2;$$

$$I_{y,ob} = \sqrt{\frac{I_{y0,ob}}{A}} = \sqrt{\frac{9960}{101,6}} = 9.9 \text{ cm}; \ \lambda_{y,ob} = \frac{l_p}{i_{y.op}} = \frac{800}{9.9} = 80.8.$$

- 10. По табл. Д.1 СП 16.13330, при $\lambda=80,8$ и $R_{y0}=22,0$, находим коэффициент продольного изгиба усиленной стойки: $\varphi_0=0,704$.
- 11. Проверим условие устойчивости центрально-сжатого стержня после усиления:

$$\begin{split} \frac{N_0}{A_0 \cdot \varphi_{0b}} + \frac{\Delta N}{(A_0 + A_r)\varphi_{0b}} &= \frac{600}{0,704 \cdot 70,4} + \frac{450}{0,704 \cdot 101,6} = 18,4 \leq R_{yo}\gamma_c \\ &= 19,8 \; \text{KH/cm}^2. \end{split}$$

Таким образом, условие выполняется.

Занятие № 7

РАСЧЕТ ПРОГИБА УСИЛЕННОЙ БАЛКИ С УЧЕТОМ ОСТАТОЧНОГО ПРОГИБА

Перемещения (прогиб, отклонения от вертикали) усиленных элементов конструкций определяются по формуле:

$$f = f_0 + f_w + \Delta f, \tag{7.1}$$

где f_0 — начальное перемещение; f_w — дополнительное перемещение (прогиб) при усилении элемента с использованием сварки.

Дополнительные перемещения f_w можно не учитывать:

$$-$$
 при $\frac{\sigma_{o,max}}{R_{v.o}} \leq 0$,3;

- при несимметричном одностороннем усилении элемента со стороны растянутых волокон;
- при усилении неразрезных многопролетных элементов (например, неразрезных балок) либо элементов рамных конструкций, имеющих жесткие узлы сопряжения с примыкающими элементами.

В случае усиления изгибаемых элементов (балок) на части их длины значения f_w могут быть уточнены по формуле:

$$f_w = a \cdot \frac{v_r \cdot l_r}{8l} (2l - l_r) \cdot \sum n_i \cdot y_i, \tag{7.2}$$

где l — пролет балки; l_r — длина элемента усиления; $v_r = 0.04 \, k_f^2$ — параметр продольного укорочения элемента от наложения одиночного шва; k_f — катет связующих швов, см; $n_i = 1 - u \cdot \frac{\ln(1-\xi_i)}{\ln 2}$ — коэффициент, учитывающих начальное напряженно-деформированное состояние элемента и схему его усиления; $\xi_i = \frac{\sigma_{oi}}{R_{yo}}$ — коэффициент, характеризующий уровень начальных напряжений в зоне -го шва в наиболее нагруженном сечении элемента; u = 1,5 при швах, расположенных только в растянутой зоне сечения, u = 0,7 при расположенных их только в сжатой зоне; если сварные швы в обеих зонах, то u = 1; Δf — приращение перемещений от нормативных нагрузок, приложенных после усиления.

Пример 1

Определить прогиб усиленной балки с учетом остаточного прогиба, возникающего вследствие приварки элементов усиления. Произвести проверку на жесткость. Расчетная схема балки показана на рис. 7.1.

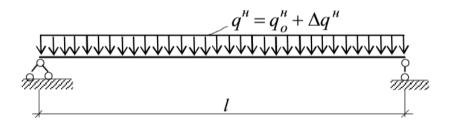


Рис. 7.1. К расчету примера

Исходные данные. Расчетная длина балки $l=l_0=5$ м; $q_0^{\rm H}=15$,0 кН/м. Приращение нагрузки после усиления - $\Delta q^{\rm H}=6$ кН/м. Допустимые прогибы балки составляют: $\frac{1}{400}l=\frac{500}{400}=1$,25 см.

Решение

1. Определим начальный прогиб балки до усиления:

$$f_0 = \frac{5q_0^{\mathrm{H}} \cdot l^4}{384 \cdot E \cdot I_0} = \frac{5 \cdot 15,0 \cdot 10^{-2} \cdot 500^4}{384 \cdot 20600 \cdot 9608,3} = 0,617 \,\mathrm{cm}.$$

2. Находим дополнительный прогиб после усиления:

$$\Delta f = \frac{5\Delta q^{\text{H}} \cdot l^4}{384 \cdot E \cdot I_{0.0h}} = \frac{5 \cdot 6.0 \cdot 10^{-2} \cdot 500^4}{384 \cdot 20600 \cdot 19436} = 0.122 \text{ cm}.$$

3. Определяем дополнительный прогиб при усилении элемента с использованием сварки по формуле (7.2):

4.

$$f_w = a \cdot \frac{v_r \cdot l_r}{8I} (2l - l_r) \cdot \sum_i n_i \cdot y_i,$$

где а=1;
$$v_r=0.04k_a^2=0.04\cdot 0.4^2=6.4\cdot 10^{-3};$$
 $l=l_r=500$ см; $I=I_{\rm x,o6}=19436$ см 4 , $n_i=1-u\cdot \frac{\ln(1-\xi_i)}{\ln 2}=1-0.7\frac{-1.45}{0.693}=2.46;$ u=0,7;
$$\xi_i=\frac{\sigma_{oi}}{R_{y0}}=\frac{17.23}{22.5}=0.766;$$
 $y_i=y_{op}-y_{cm}=23.65-6.2=17.45$ см.

Тогда

$$f_w = 1 \cdot \frac{6.4 \cdot 10^{-3} \cdot 500^2}{8 \cdot 19436} (2.46 \cdot 17.45) = 0.442 \text{ cm}.$$

Прогиб усиленной балки, определяемый формулой (7.1), не должен превышать [f]:

$$f = f_0 + f_w + \Delta f = 0.617 + 0.442 + 0.122 = 1.181 \le [f] = \frac{1}{400}l = \frac{500}{400} = 1.25 \text{ cm}.$$

Условие выполняется.

Занятие № 8

РАСЧЕТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ГНУТОСВАРНЫХ ПРОФИЛЕЙ

В рассматриваемом задании использованы стальные гнутосварные профили пролетом 18 метров. Фермы запроектированы и рассчитаны по существующей методике. Однако за длительный период эксплуатации пояса этих ферм получили коррозию. Величина этой коррозии определена в результате их обследований.

В данном примере приведены выполнение рамных расчетов фермы. Даны такие данные по параметрам коррозии поясов.

Выполнен расчет геометрических характеристик поясов с результатами их коррозии, сделан расчет несущей способности, а также даны схемы усиления этих поясов.

1. Исходные данные

Пролет фермы — 18 м. Шаг ферм — 6 м. Очертание решетки — фермы с параллельными поясами высотой по наружным граням поясов 2000 мм. Уклон верхнего пояса 1,5%. Опирание на колонны — шарнирное. Класс ответственности здания — II. Материал конструкций: гнутосварные профили — сталь C255 по ГОСТ 27772-2015. Сварка полуавтоматическая в среде углекислого газа сварочной проволокой марки CB-08Г2С (ГОСТ 2246-70*) диаметром d=2 мм. Ферма не подвержена непосредственному действию динамических нагрузок.

2. Статический расчет фермы

Расчетная узловая сила на ферму

– от постоянной нагрузки:

$$P_n = 282,3 \text{ kH};$$

– от снеговой нагрузки:

$$P_s = 239,4 \text{ kH}.$$

Горизонтальную рамную нагрузку принимаем:

$$P_p = 80.0 \text{ kH}.$$

Результаты статического расчета приведены в таблице.

Таблица 8.1 **Расчетные продольные усилия в стержнях фермы, кН**

Элементы	Обозна-	Уси.	лия от еди	ничной	Усилие от	Усилие о	г снеговой	нагрузки	Усилие от	Усиление от	Расчетные	усилия, кН
фермы	чение	на	агрузки Р=	=1 кН	постоянной	P	n = 239,4	кН	единичной	сжимающей		
	стержня	слева	справа	с двух	нагрузки	слева	справа	с двух	сжимающей	силы	сжатие	растяжение
				сторон	Pn = 282,3			сторон	силы	$P_p = 80,0 \text{ KH}$		
									Н= 1 кН			
Верхний	a-1	-1,4	-0,6	-2,0	-56,46	-33,52	-14,36	-47,88	-1	-80,0	-184,34	_
пояс	б-г	-3,3	-1,6	-4,9	-138,33	-79,00	-38,31	-117,31	-1	-80,0	-335,64	-
	д-3	-3,5	-2,8	-6,3	-177,85	-83,79	-67,03	-150,82	-1	-80,0	-408,67	_
Нижний	б-5	2,7	1,2	3,9	110,1	64,64	28,73	93,37	0	0	_	203,47
пояс	г-5	3,8	2,2	6,0	169,38	90,97	52,67	143,64	0	0	_	313,02
	e-5	3,3	3,3	6,6	186,32	79,0	79,0	158,0	0	0	_	344,32
Раскосы	a-5	2,3	0,9	3,2	90,34	55,06	21,55	76,61	0	0	_	166,95
	а-б	-2,2	-0,9	-3,1	-87,51	-52,66	-21,55	-74,21	0	0	-161,72	
	б-в	0,9	0,9	1,8	50,81	21,55	21,55	43,10	0	0	_	93,91
	В-Г	-0,9	-0,9	-1,8	-50,81	-21,55	-21,55	-43,10	0	0	-93,91	
	г-д	-0,4	0,9	0,5	14,12	21,55	21,55	11,97	0	0	_	35,67
	д-е	0,4	-0,9	-0,5	-14,12	-21,55	-21,55	-11,97	0	0	-35,67	_

3. Подбор сечений стержневой фермы

3.1. Подбор сечений верхнего сжатого пояса

Верхний пояс принимаем без изменений сечения по всей длине фермы. ГСП применяется прямоугольного сечения и рассчитывается на усилие

$$N_{II-3} = 408,67 \text{ kH}.$$

Предварительно задаемся коэффициентом ϕ =0,7.

Требуемая площадь сечения:

$$A_{Tp} = \frac{N_{д-3}}{\varphi R_{\nu} \gamma_c} = \frac{408,67}{0,7 \cdot 24 \cdot 1} = 24,3 \text{ cm}^2$$

Принимаем профиль сечением Гн. □ 160х120х5

 $A=26.4 \text{ cm}^2$; $i_x = 6.04 \text{ cm}$; $i_y = 4.84 \text{ cm}$.

Значение $\frac{D_b}{t} = \frac{160}{5} = 32 < 45$, не превышает предельную величину.

Гибкость стержня:

$$\lambda_{x} = \frac{l_{ef,x}}{i_{x}} = \frac{300}{6,04} = 49,7;$$

$$\lambda_{y} = \frac{l_{ef,y}}{i_{y}} = \frac{300}{4,84} = 62;$$

$$\varphi_{e} = 0,79.$$

Предельные гибкости:

$$a_{x} = \frac{N_{\text{д}-3}}{\varphi_{x}AR_{y}\gamma_{c}} = \frac{408,67}{0,85 \cdot 26,4 \cdot 24 \cdot 1} = 0,76;$$

$$[\lambda]_{x} = 180 - 60a_{x} = 180 - 60 \cdot 0,76 = 134,5 > \lambda_{x} = 49,7;$$

$$a_{y} = \frac{N_{\text{д}-3}}{\varphi_{y}AR_{y}\gamma_{c}} = \frac{408,67}{0,79 \cdot 26,4 \cdot 24 \cdot 1} = 0,82;$$

$$[\lambda]_{y} = 180 - 60a_{y} = 180 - 60 \cdot 0,82 = 131,0 > \lambda_{y} = 62;$$

Условие соблюдается.

Проверка устойчивости стержня:

$$\sigma = \frac{N_{\text{A}-3}}{\phi A} = \frac{408,67}{0,79 \cdot 26,4} = 19,6 \frac{\kappa H}{c M^2} R < R_y \gamma_c = 24 \frac{\kappa H}{c M^2}.$$

Устойчивость обеспечена.

Проверяем гибкость стенки:

$$\frac{h_{ef}}{t} = \frac{D_b - 4t}{t} = \frac{160 - 4 \cdot 5}{5} = 28 < \left[\frac{h_{ef}}{t}\right] = 1,29 \sqrt{\frac{E}{R_y}} = 1,29 \sqrt{\frac{206 \cdot 10^3}{240}}$$
$$= 37,8.$$

Условие выполняется, поэтому при расчете пояса во внимание принимается полная площадь сечения A.

Подбор сечения нижнего растянутого пояса. Нижний пояс проектируем без применения сечения по всей длине. ГСП принимаем квадратного сечения и рассчитываем на усилие

$$N_{e-5} = 344,32 \text{ kH}.$$

Требуемая площадь сечения:

$$A_{\text{Tp}} = \frac{N}{R_{\nu} \gamma_c} = \frac{344,32}{24 \cdot 0.95} = 15.1 \text{ cm}^2.$$

Принимаем профиль сечением Гн. □ 120х4

$$A=18,2 \text{ cm}^2$$
; $i_x = 4,71 \text{ cm}$; $i_y = 4,71 \text{ cm}$.

Проверяем условие:

$$\frac{D_b}{t} = \frac{120}{4} = 30 < 45.$$

Условие соблюдается.

Проверяем гибкость стержня:

$$\lambda_{x} = \frac{l_{ef,x}}{i_{x}} = \frac{300}{4,71} = 63,7 < [\lambda]_{x} = 400,$$

$$\lambda_{y} = \frac{l_{ef,y}}{i_{y}} = \frac{750}{4,71} = 159,2 < [\lambda]_{y} = 400.$$

Проверка прочности сечения на растяжение:

$$\sigma = \frac{N_{\rm e-5}}{\rm A} = \frac{344,32}{18,2} = 18,92 \; \frac{\rm \kappa H}{\rm cm^2} < R_y \gamma_c = 24 \cdot 0,95 = 22,8 \; \frac{\rm \kappa H}{\rm cm^2}.$$

Прочность обеспечена.

Проверяем гибкость стенки:

$$\frac{h_{ef}}{t} = \frac{D_b - 4t}{t} = \frac{120 - 4 \cdot 5}{4} = 26 < \left[\frac{h_{ef}}{t}\right] = 37.8.$$

Условие удовлетворяется.

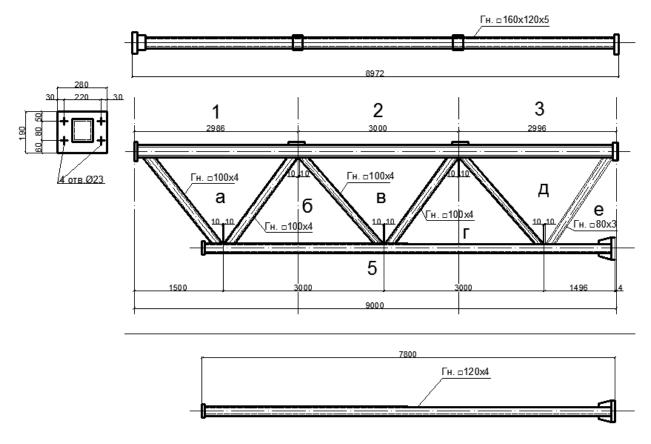


Рис. 8.1. Отправочный элемент фермы из ГСП

По результатам обследования выявлена коррозия верхнего и нижнего поясов стропильной фермы на 1 мм.

Поперечное сечение верхнего пояса Д-3 стало равным:

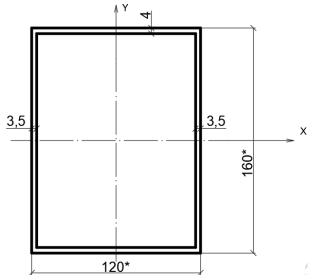


Рис. 8.2. Фактическое поперечное сечение поясов стропильной фермы после учета коррозии глубиной 1 мм

Площадь сечения поясов стропильной фермы после коррозии равна:

$$A_{K} = 2 \cdot (12,0-0,3) \cdot 0,4 + 2 \cdot (16,0-0,8) \cdot 0,35 = 20 \text{ cm}^{2}.$$

Момент инерции сечения поясов стропильной фермы после коррозии равны:

$$J_x = \frac{2 \cdot 0.35 \cdot 15.2^3}{12} + 2 \cdot 11.7 \cdot 0.4 \cdot (7.7)^2 = 759.81 \text{ cm}^4;$$

$$J_y = \frac{2 \cdot 0.4 \cdot 11.7^3}{12} + 2 \cdot 15.2 \cdot 0.35 \cdot (5.5)^2 = 428.63 \text{ cm}^4.$$

Радиусы инерции сечения и гибкости поясов стропильной фермы после коррозии равны:

$$i_x = \sqrt{\frac{J_x}{A}} = 6,14 \text{ cm.}$$
 $\lambda_x = \frac{l_{ef,x}}{i_x} = \frac{300}{6,14} = 48,86;$ $i_y = \sqrt{\frac{J_y}{A}} = 4,66 \text{ cm.}$ $\lambda_y = \frac{l_{ef,y}}{i_y} = \frac{300}{4,66} = 65,22.$

Коэффициенты продольного изгиба сечения поясов стропильной фермы после коррозии равны:

$$\phi_x = 0.844;
 \phi_y = 0.737.$$

Таким образом, проверим условие устойчивости:

$$\sigma = \frac{N}{\phi_v A} = \frac{408,67}{0,737 \cdot 20} = 27,725 \frac{\kappa H}{cm^2} > R_y = 24 \frac{\kappa H}{cm^2}.$$

Несущая способность стержня не обеспечена, требуется усиление.

Усиление стержня выполним из полосовой стали по каждой стороне стержня из стали C255 толщиной 3 мм.

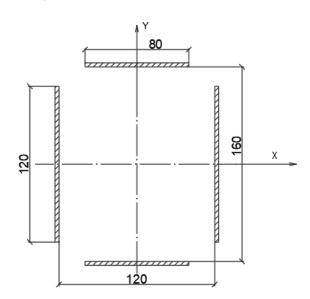


Рис. 8.3. Элементы из полосовой стали для усиления

Определим площадь усиливающих элементов фермы Д-3:

$$\Delta A = 2 \cdot (0.8 \cdot 0.3 + 12 \cdot 0.3) = 12 \text{ cm}^2.$$

Определим моменты усиливающих элементов фермы Д-3:

$$\Delta J_x = 0.3 \cdot \frac{12^3}{12} + 2 \cdot 8 \cdot 0.3 \cdot 7.65^2 = 324.2 \text{ cm}^4;$$

$$\Delta J_y = 2 \cdot 0.3 \cdot \frac{8^3}{12} + 2 \cdot 12 \cdot 0.3 \cdot 6.15^2 = 297.6 \text{ cm}^4.$$

Определим суммарную площадь с учетом усиления фермы Д-3:

$$\Sigma A = A + \Delta A = 19,54 + 12 = 31,54 \text{ cm}^2$$
.

Определим радиусы инерции и гибкость с учетом усиления фермы Д-3:

$$\sum i_x = \sqrt{\frac{J_x + \Delta J_y}{\Sigma^A}} = 5,8 \text{ cm}, \qquad \lambda_x = 51,7;$$
 $\sum i_x = \sqrt{\frac{J_y + \Delta J_x}{\Sigma^A}} = 4,7 \text{ cm}, \qquad \lambda_y = 63,83;$

Определим коэффициент продольного изгиба с учетом усиления:

$$\phi_x = 0.82;$$
 $\phi_y = 0.75.$

Проверим условие устойчивости усиленного стержня по требованиям СНиП II-23-81*:

$$\sigma = \frac{N}{\varphi_v A} = \frac{408,67}{0,78 \cdot 31,54} = 16,4 \frac{\kappa H}{cm^2} < R_y = 24 \frac{\kappa H}{cm^2}$$

Устойчивость обеспечена.

Проверим условие устойчивости усиленного элемента фермы Д-3 по требованиям СП 16.13330:

$$\frac{N}{\varphi A R_{\nu} \gamma_{c}} = \frac{408,67}{0,72 \cdot 31,54 \cdot 24 \cdot 0,95} = 0,79 < 1.$$

Значение коэффициента продольного изгиба усиленного элемента фермы Д-3:

$$\varphi = \frac{0.5(\delta - \sqrt{\delta^2 - 39.48 \ \lambda^2}}{\bar{\lambda}^2} = 0.72,$$

где условная гибкость усиленного элемента фермы Д-3 равна:

$$\bar{\lambda} = \lambda \sqrt{\frac{R_y}{E}} = 63,83 \sqrt{\frac{2400}{2,1 \cdot 10^6}} = 2,16;$$

$$\lambda_y = 63,83 \quad \bar{\lambda} = 2,16$$

$$\delta = 9,87 (1 - \alpha + \beta \cdot \bar{\lambda}) + \bar{\lambda}^2 = 15,5$$

$$\alpha = 0,03; \beta = 0,06.$$

Таким образом, устойчивость усиленного элемента фермы Д-3 обеспечена.

3.2. Поперечное сечение нижнего пояса е-5 стало равным:

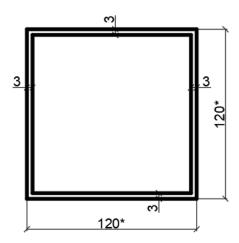


Рис. 8.4. Фактическое поперечное сечение нижнего пояса e-5 стропильной фермы

Площадь сечения нижнего пояса после учета коррозии:

$$A_n=12x4x0,3=14,4$$
 cm².

Условие прочности сечения нижнего пояса е-5 стропильной фермы:

$$\frac{N}{A_n R_v \gamma_c} = \frac{344,32}{14,4 \cdot 24 \cdot 0.95} = 1.048 > 1,$$

где

$$\frac{R_u}{R_v} = \frac{36}{24} = 1.5 > 1.39.$$

 R_u =36 кH расчетное сопротивление стали по временному сопротивлению, R_y =24 кH расчетное сопротивление стали по пределу текучести.

Таким образом, несущая способность нижнего пояса е-5 стропильной фермы после коррозионного износа не обеспечена.

Поэтому сечение нижнего пояса необходимо усилить полосовой сталью 90x2(bxh) мм из стали класса прочности C240.

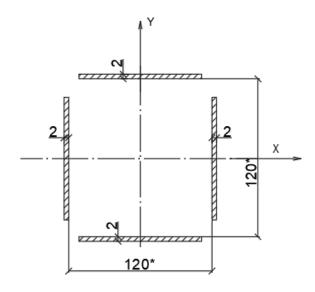


Рис. 8.5. Элементы из полосовой стали для усиления

Определяем площадь усиливающих элементов из полосовой стали:

$$\Delta A = 4x9,0x0,2 = 7,2 \text{ cm}^2$$
.

Выполняем проверку прочности усиленного нижнего пояса:

$$\frac{N}{AR_{\nu}\gamma_c} = \frac{344,32}{21,6 \cdot 24 \cdot 0,95} = 0,699 < 1,$$

где суммарная площадь усиленного элемента равна:

$$\Sigma A = A_n + \Delta A = 14,4+7,2=21,6 \text{ cm}^2$$
.

Таким образом, прочность сечения нижнего пояса с учетом усиления обеспечена.

3.3. Конструирование сварных швов

Проверим несущую способность сварных швов, прикрепляющих полосовую сталь к элементам фермы.

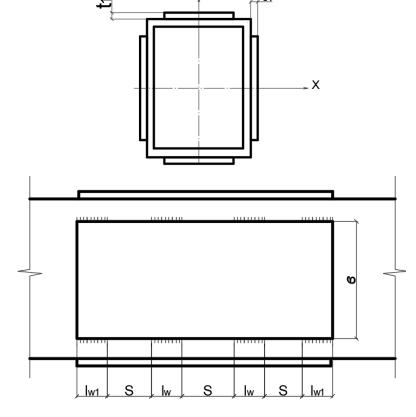


Рис. 8.6. К расчету сварных швов

При конструировании прерывистых сварных швов, согласно СП 16.13330.2016, необходимо учитывать следующие требования:

- 1. Расстояние $^{\mathfrak{S}}$ между участками сварных швов (рис. 8.6), как правило, не должно превышать одного из значений: 200 мм, $12^{t_{\min}}$ в сжатом элементе ($^{t_{\min}}$ толщина самого тонкого из соединяемых элементов), $16^{t_{\min}}$ в растянутом элементе.
- 2. При наложении прерывистого шва следует предусматривать шов по концам соединяемых частей элементов; длина l _{w1} этого шва в элементах составного сечения из пластин должна быть не менее $0,75^{b}$, где b ширина более узкой из соединяемых пластин.

4. Проверка прочности и усиления опорного узла фермы

В опорном узле фермы, при примыкании одного элемента, несущую способность стенки пояса при $\frac{\mathrm{d}}{\mathrm{D}} \leq 0.9$ и $\frac{g}{\mathrm{e}} \leq 0.25$ проверяют по формуле:

$$\left(N + \frac{1,5M}{d_b}\right) \frac{\left(0,4 + \frac{1,8g}{b}\right)f\sin\alpha}{\gamma_c \gamma_d \gamma_D R_y t^2 (b + g + \sqrt{2Df})} \le 1,$$
(8.1)

где γ_d — коэффициент влияния знака усилия в примыкающем элементе, принимаемый равным 1,2 при растяжении и 1 — в остальных случаях; γ_D — коэффициент влияния продольной силы в поясе, определяемый при сжатии в поясе, если $|F|/(AR_y) > 0,5$, по формуле: $\gamma_D = 1,5 - |F|/(AR_y)$, в остальных случаях $\gamma_D = 1,0$; b — длина участка линии пересечения примыкающего элемента с поясом в направлении оси пояса, равная $d_b/\sin\alpha$; g — половина расстояния между смежными стенками соседних элементов решетки или поперечной стенкой раскоса и опорным ребром;

$$f = \frac{D-d}{2} = \frac{16-10}{2} = 3$$
 cm,

N — усилие в опорном раскосе; M = 0 — изгибающий момент; R_y = 24 кH — расчетное сопротивление стали по пределу текучести; γ_c = 0,95; γ_d = 1,2.

Проверяем условие:

$$\frac{F}{AR_y} = \frac{184,34}{26,4 \cdot 24} = 0,29 < 0,5.$$

Следовательно, $\gamma_D = 1$, если при данных параметрах не выполняется условие (8.1), то усиливаем верхний пояс стальными листами толщиной 0,5 см длиной 20 см. В этом случае нужно принять t=0,5+0,5=1 см и проверить условие (8.1).

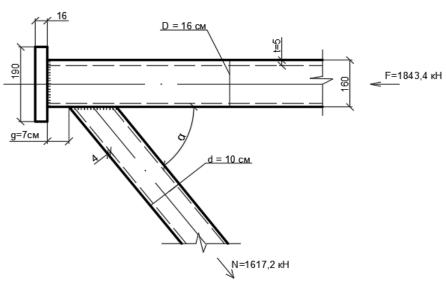


Рис. 8.7. Опорный узел стропильной фермы (исходные данные для расчета)

Поперечное сечение верхнего пояса выполнено гнутосварных труб \Box 160x120x5 мм (D=16 см, t=0,5 см, A=26,4 см²), опорного раскоса — \Box 100x4 мм (d=10 см, t=0,4 см), угол примыкания опорного раскоса к верхнему поясу равен α = 51° ; таким образом, $\sin \alpha = 0,777$;

$$B = \frac{\alpha}{\sin \alpha} = \frac{10}{0,777} = 12,87 \text{ cm}.$$

Занятие № 9

РАСЧЕТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ УГОЛКОВ

В рассматриваемом задании использованы стальные уголки пролетом 24 метров. Фермы запроектированы и рассчитаны по существующей методике. Однако за длительный период эксплуатации пояса этих ферм получили коррозию. Величина этой коррозии определена в результате их обследований.

В данном примере приведены выполнение рамных расчетов фермы. Даны такие данные по параметрам коррозии поясов.

Выполнен расчет геометрических характеристик поясов с результатами их коррозии, сделан расчет несущей способности, а также даны схемы усиления этих поясов.

1. Исходные данные

Пролет фермы – 24 м. Шаг ферм – 6,0 м. Очертание решетки – ферма с параллельными поясами высотой по обушкам уголков 3150 мм. Опирание на колонны шарнирное. Уклон верхнего пояса 1,5%. Здание отапливаемое. Кровля рубероидная, четырехслойная с защитным слоем из гравия, втопленного в битумную мастику. Покрытие утепленное, утеплитель – плиты из ячеистого бетона. Покрытие из сборных железобетонных ребристых плит размером 6х3 м. Место строительства – г. Пенза. Класс ответственности здания – II. Материал конструкций: уголки – сталь С245, фасонки – сталь С255 по ГОСТ 27772-2015.

Сварка полуавтоматическая под флюсом варочной проволокой марки СВ-08A (ГОСТ 2246-70*) диаметром d=2 мм. На монтаже применяется ручная сварка электродами Э42 по ГОСТ 9467-75*. Болты нормальной точности класса 5.6. Фермы не подвержены непосредственно динамическим нагрузкам.

2. Статический расчет фермы

Для определения расчетных усилий в стержнях фермы предварительно выполняем сбор нагрузок.

Снеговая нагрузка для г. Пензы в соответствии с (СП 20.13330), для III снегового района:

$$S_0 = 10 \text{ kH/m}^2$$
.

Нормативное значение снеговой нагрузки составит

$$S = S_0 \mu = 10 \cdot 1 = 10 \text{ kH/m}^2$$

где μ =1 при уклоне кровли менее 25° [СП 20.13330.2016, приложение Б1].

Расчетная снеговая нагрузка на единицу длины фермы

$$P_{S} = SB\gamma_{f}\gamma_{n} = 10 \cdot 6 \cdot 1,4 \cdot 0,95 = 79,8 \text{ кH/м}.$$

Расчетная узловая сила на ферму:

– от постоянной нагрузки

$$P_n = q_n d = 208,1 \cdot 3 = 624,3 \text{ kH};$$

– от снеговой нагрузки

$$P_n = p_s d = 79,8 \cdot 3 = 239,4$$
 кН.

Величина усилий в стержнях формы при данной нагрузке и подобранные их сечения приведены в таблице.

Элемен-	Обозна- чение		я от едини узки Р=1		Усилие от постоянной		ие от снег нагрузки		Расче усили	
фермы	стержня		1	1	нагрузки	Pn = 239,4 кH		1		Т
		слева	справа	с двух сторон	Pn = 624,3 кН	слева	справа	с двух сторон	сжатие	растяж ение
Верхний	a-2	0	0	0	0	0	0	0	0	0
пояс	в-3,г-4	-0,39	-0,19	-0,58	-362,1	-93,37	-45,49	-138,85	-500,95	_
	e-5	-0,39	-0,39	-0,78	-418,66	-93,37	-93,37	-186,74	-673,70	_
Нижний	б-6	0,22	0,09	0,31	193,53	52,67	52,67	74,22	_	267,75
пояс	д-7	0,44	0,29	0,73	455,74	105,34	105,34	174,77	_	630,51
Раскосы	а-б	-0,34	-0,13	-0,47	-293,42	-81,4	-31,12	-112,52	-405,94	_
	6-в	0,23	0,14	0,37	230,99	55,06	33,52	88,58	_	319,57
	г-д	-0,08	-0,14	-0,22	-137,35	-19,15	-33,52	-52,67	-190,02	_
	д-е	-0,08	0,14	0,06	37,46	-19,15	33,52	14,37	_	70,98
Стойки	В-Г	-0,1	0	-0,1	-62,43	-23,94	-33,52	-23,94	-86,37	_
	e-e`	-0,05	-0,05	-0,1	-62,43	-11,97	-11,97	-23,94	-86,37	_

							етная	Раді инерці		Гиб	кость	Преде:				Проверка	і сечений, Н
Элемен-	Обозна- чение	Расчет- ное	Наименование стали по	Сече-	Площадь									ϕ_{min}	γ _c	Прочно-	Устойчи-
фермы	стержня	усилие N, кН	ГОСТ 27772-2015	ние	A, cm ²	$l_{ef,\mathrm{x}}$	$l_{ef,y}$	i_{x}	i_y	λ_{x}	λ_y	$[\lambda]_{x}$	[λ] _y			$\frac{N}{A} \le R_y \gamma_c$	вости $\frac{N}{\varphi A} \le R_y \gamma_c$
																кН	кН
Верхний	a-2	0		7 125x9		280	280	3,86	5,56	72,6	50,4	_	_	_	0,95	-	-
пояс	в-3	-500,95	C245	125x9		300	300	3,86	5,56	77,7	54	137,2	143,9	0,7	0,95	_	16,27<22,8
	г-4		C243		44												
	e-5	-673,7				300	300	3,86	5,56	77,7	54	122,4	131,5	0,7	0,95	_	21,87<22,8
Нижний	б-6	267,75		лг 63x5	12,26	580	580	1,94	3,04	299	190,8	400	400	_	0,95	218,4<228	_
пояс			C245	75													
	д-7	630,51		90x8	27,8	600	1200	2,76	4,16	217,4	288,5	400	400	_	0,95	226,8<228	-
Раскосы	а-б	-405,94		лг 100x8	31	205	410	3,07	4,62	66,8	89	165	154,2	0,62	0,95	_	21,12<22,8
	б-в	319,57		זר	16,3	345	431	2,15	3,07	160,5	129,4	400	400	_	0,95	196,1<228	_
	г-д	-190,02	C245	70x6 70 90x8	27,8	345	431	2,15	2,15	125	103,6	155,3	167,3	0,39	0,8	_	17,53<19,2
	д-е	70,98		63x5	12,26	345	431	1,94	2,76	177,8	141,8	400	400	_	0,95	57,8<228	-
Стойки	В-Г	-86,37	C245	7 63x5 7	12,26	248	310	1,94	1,94	127,8	102	174,6	180	0,38	0,8	-	18,54<19,2
	e-e`	-86,37		63x5	12,26	248	310	1,94	1,94	127,8	102	174,6	180	0,38	0,8	_	18,54<19,2

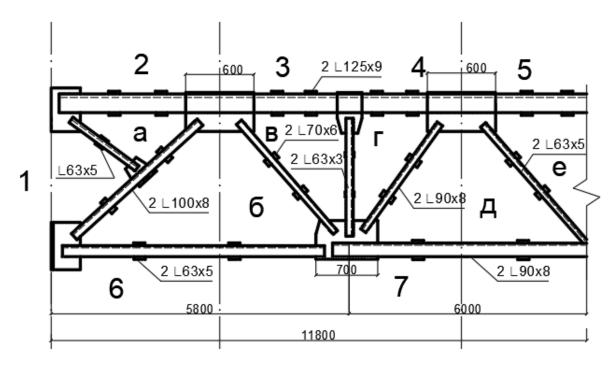


Рис. 9.1. Отправочный элемент фермы Ф-1 из симметричных уголков

3. Подбор сечений стержней фермы

Принимаем толщину фасонок t_{φ} =12 мм.

3.1. Подбор сечения стержней верхнего пояса

Верхний пояс принимаем без изменения сечения по всей длине и рассчитываем его на максимальное усилие – N_{e-5} = -673,7 кH.

Задаемся гибкостью — λ = 90, по [п.10.4 табл. 32 СП 16.13330] .

Коэффициент продольного изгиба ϕ =0,612 [приложение Д СП 16.13330].

Требуемая площадь сечения:

$$A_{\text{Tp}} = \frac{N}{\varphi R_{\nu} \gamma_c} = \frac{673.7}{0.612 \cdot 24 \cdot 0.95} = 48.3 \text{ cm}^2.$$

Принимаем $2 \perp 125$ х9 A=44,0 см², i_v =3,86 см, i_v =5,56 см.

Гибкости стержня:

$$\lambda_{\rm x} = \frac{l_{ef,\rm x}}{i_{\rm x}} = \frac{300}{3,86} = 77,7 < [\lambda]_{\rm x} = 122,4.$$

Коэффициент продольного изгиба в плоскости оси х:

$$\varphi_{\rm x}=\varphi_{min}=0.70.$$

Гибкости стержня:

$$\lambda_y = \frac{l_{ef,y}}{i_y} = \frac{300}{5,56} = 54 < [\lambda]_y = 131,5.$$

Коэффициент продольного изгиба в плоскости оси у:

$$\varphi_{v} = 0.83.$$

Предельные гибкости:

$$a_{x} = \frac{N}{\varphi_{x}AR_{y}\gamma_{c}} = \frac{673,7}{0,7 \cdot 44 \cdot 24 \cdot 0,95} = 0,96;$$

$$[\lambda]_{x} = 180 - 60a_{x} = 180 - 60 \cdot 0,96 = 122,4;$$

$$a_{y} = \frac{N}{\varphi_{y}AR_{y}\gamma_{c}} = \frac{408,67}{0,79 \cdot 26,4 \cdot 24 \cdot 1} = 0,82;$$

$$[\lambda]_{y} = 180 - 60a_{y} = 180 - 60 \cdot 0,81 = 131,5.$$

Проверка устойчивости стержня:

$$\sigma = \frac{N}{\phi_{min}A} = \frac{673.7}{0.7 \cdot 44} = 21.87 \frac{\kappa H}{c M^2} < R_y \gamma_c = 24 \cdot 0.95 = 22.8 \frac{\kappa H}{c M^2}.$$

Устойчивость обеспечена.

3.2. Подбор сечения нижнего пояса

Нижний пояс проектируем с изменением сечения по длине.

Стержень д-7

Расчетное усилие $N_{\text{д-7}} = 630,51 \text{ кH}.$

Требуемая площадь сечения:

$$A_{\rm Tp} = \frac{N_{\rm д-7}}{R_{\rm y}\gamma_c} = \frac{630,51}{24\cdot 0,95} = 27,7 \text{ cm}^2.$$

Требуемые радиусы инерции:

$$i_{x,\text{Tp}} = \frac{l_{ef,x}}{[\lambda]} = \frac{600}{400} = 1,5 \text{ cm};$$
 $i_{y,\text{Tp}} = \frac{l_{ef,y}}{[\lambda]} = \frac{1200}{400} = 3 \text{ cm}.$

Принимаем $2 \, \sqcup \, 90x8$, $A=27.8 \, \text{см}^2$, $i_x=2.76 \, \text{см}$, $i_y=4.16 \, \text{см}$.

Гибкости стержня д-7:

$$\lambda_{x} = \frac{l_{ef,x}}{i_{x}} = \frac{600}{2,76} = 217,4 < [\lambda] = 400;$$

$$\lambda_{y} = \frac{l_{ef,y}}{i_{y}} = \frac{1200}{4,16} = 288,5 < [\lambda] = 400.$$

Проверяем прочность:

$$\sigma = \frac{N}{A} = \frac{630,51}{27,8} = 22,68 \frac{\kappa H}{cm^2} < R_y \gamma_c = 24 \cdot 0,95 = 22,8 \frac{\kappa H}{cm^2}.$$

Условие не выполняется.

Стержень б-6

Расчетное усилие $N_{6-6} = 267,75$ кН.

Требуемая площадь сечения:

$$A_{\rm rp} = \frac{N_{6-6}}{R_{\nu}\gamma_c} = \frac{267,71}{24 \cdot 0,95} = 11,8 \text{ cm}^2.$$

Принимаем $2 \, \sqcup \, 63x5$, $A=12,26 \, \text{cm}^2$, $i_x=1,94 \, \text{cm}$, $i_y=3,04 \, \text{cm}$.

Гибкости стержня б-6:

$$\lambda_{x} = \frac{l_{ef,x}}{i_{x}} = \frac{580}{1,94} = 299 < [\lambda]_{x} = 400;$$

$$\lambda_{y} = \frac{l_{ef,y}}{i_{y}} = \frac{580}{3,04} = 190,8 < [\lambda]_{y} = 400.$$

Гибкость меньше предельной.

Подбор сечений сжатых раскосов и стоек производится по методике подбора сечений сжатых верхних поясов ферм, растянутых раскосов — по методике подбора сечений растянутых поясов ферм.

4. Расчет сварных швов прикрепления решетки фермы к верхнему и нижнему поясам

Для присоединения стержней применяется полуавтоматическая сварка под флюсом проволокой CB-08A $d=2\,$ мм (ГОСТ 2246-70*). Коэффициенты и расчетные сопротивления, принимаемые при расчете по металлу шва:

$$eta_f=0.9;\ \gamma_{\omega f}=1; R_{\omega f}=180\ \mathrm{M\Pi a}\ [28,$$
табл. $56^*];$ $eta_f\gamma_{\omega f}R_{\omega f}=0.9\cdot 1\cdot 180=162\ \mathrm{M\Pi a}.$

При расчете по металлу границы сплавления:

$$eta_z=1{,}05;\ \gamma_{\omega z}=1;\ R_{\omega z}=0{,}45R_{un}=0{,}45\cdot 370=166{,}5$$
 МПа где $R_{un}=370$ МПа [28, табл. 56^*]; $eta_f\gamma_{\omega f}R_{\omega f}=162$ МПа $МПа.$

Несущая способность сварных швов определяется прочностью металла сварного шва и вычисляется по формуле:

$$l_{\omega} = \frac{N_{\text{o}6(\pi)}}{nK_f \beta_f \gamma_{\omega f} R_{\omega f} \gamma_c} + a,$$

где n – количество швов (n=2);

a – длина шва на непровар (a=1-2 см);

 K_f – катет сварного шва;

 $N_{\rm of(n)}$ — усилия действующие на обушок $N_{\rm of}$ и перо $N_{\rm n}$, которые определяются из выражений:

$$N_{\Pi}=N\left(\frac{b-z_0}{b}\right), \qquad N_{\text{of}}=N=\frac{z_0}{b},$$

где N — расчетное усилие, действующее в элементе;

b – ширина нахлестываемой на листовую фасонку полки уголков;

 z_0 — расстояние от обушка до центра тяжести уголка в направлении, параллельно листовой фасонке;

Таблица 9.2

Расчет швов

Цомор	Сечение [N], кН		Шов і	10 обушку	7	Шов по перу		
Номер стержня	Сечение	[IN], KII	<i>N</i> _{об} кН	K_f	l_{ω} cm	<i>N</i> _п кН	K_f	l_{ω} cm
б-6	7F 63x5	267,75	187,43	6	11	80,33	4	8
а-б	7F 100x8	405,94	284,16	8	12	121,78	6	8
б-в	70x6 ⊓	319,57	223,7	6	13	95,87	4	9
г-д	7F 90x8	190,08	133,06	8	7	57,02	6	6
д-е	7Γ 63x5	70,98	49,69	4	6	21,29	4	6
	7	86,37	60,46	4	6	25,91	4	6

После длительной эксплуатации проведено обследование и выявлена коррозия элементов фермы на глубину 1 мм. По фактическим размерам поперечных сечений требуется выполнить поверочный расчет и усиление (при необходимости). Фактическое поперечное сечение верхнего пояса фермы изображено на рис. 9.2.

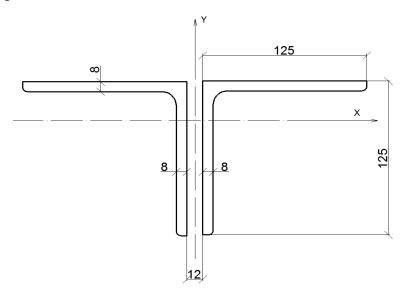


Рис. 9.2. Фактическое поперечное сечение верхнего пояса стропильной фермы

Площадь сечения верхнего пояса стропильной фермы:

Ак
$$=\frac{0.8 \cdot 11.7 + 12.5 \cdot 0.8}{2} = 38.72 \text{ см}^2.$$

Моменты инерции сечения верхнего пояса стропильной фермы:

$$J_x = 587 \text{ cm}^4;$$

 $J_y = 1226,8 \text{ cm}^4.$

Определим радиусы инерции и гибкость сечения верхнего пояса стропильной фермы:

$$i_x = \sqrt{\frac{J_x}{A}} = 3,87 \text{ cm};$$
 $\lambda_x = \frac{l_{ef,x}}{i_x} = \frac{300}{3,87} = 77,5;$ $i_y = \sqrt{\frac{J_y}{A}} = 5,53 \text{ cm};$ $\lambda_y = \frac{l_{ef,y}}{i_y} = \frac{300}{5,53} = 54,25.$

Определим коэффициент продольного изгиба:

$$\varphi_{min} = \varphi_{x} = 0.7.$$

Проверим условие устойчивости:

$$\sigma = \frac{N}{\varphi A_k} = \frac{673.7}{0.7 \cdot 38.72} = 24.8 \frac{\kappa H}{cm^2} > R_y \gamma_c = 24 \cdot 0.95 = 22.8 \frac{\kappa H}{cm^2}.$$

Устойчивость не обеспечена.

Усиление поясов выполняем установкой листов сечением 80х5 мм.

Площадь этих листов $A_y = 2 \cdot 8 \cdot 0,5 = 8 \text{ cm}^2$.

Общая площадь верхнего пояса $A = A\kappa + Ay = 38,72 + 8 = 46,72 \text{ см}^2$.

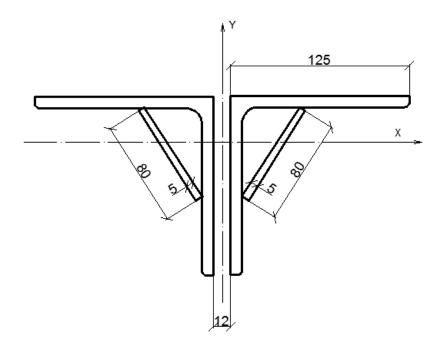


Рис. 9.3. Усиление верхнего пояса полосовой сталью

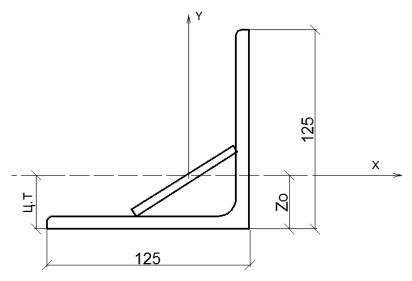


Рис. 9.4. Фрагмент усиленного верхнего пояса

Для уголка

$$A = 19.7 \text{ cm}^2$$
;

$$Z_0 = 3.36$$
 cm.

Усиление уголка

$$A_v = 0.5 \cdot 8 = 4 \text{ cm}^2$$
;

$$Z_y = 4,12$$
 cm.

Координаты центра тяжести:

$$\mathbf{X}_{_{\mathbf{I}\!\mathbf{I}\!\mathbf{T}}} = \frac{\mathbf{A} \cdot Z_0 + A_y \cdot Z_y}{\sum\! A} = \frac{19,\!7 \cdot 3,\!36 + 4 \cdot 4,\!12}{19,\!7 + 14,\!14} = 3,\!47 \text{ cm}.$$

Определяем момент инерции усиленного сечения:

$$J_{xy} = J_x + A_x(3,47 - 3,36)^2 + J_y + A_y(4,12 - 3,47)^2 = 388,2 \text{ c m}^4$$

Определяем радиусы инерции и гибкость усиленного сечения:

$$i_x = \sqrt{\frac{J_x}{\Sigma A}} = 4,05 \text{ cm.}$$
 $\lambda_x = \frac{l}{i_x} = \frac{300}{4,05} = 74,07;$ $\bar{\lambda} = \lambda_x \sqrt{\frac{R_y}{E}} = 74,07 \sqrt{\frac{2400}{2,1 \cdot 10^6}} = 2,5.$

Тип устойчивости С α =0,04 β =0,14

$$\delta = 9,87(1 - \alpha + \beta \cdot \bar{\lambda}) + \bar{\lambda}^2 = 9,87(1 - 0,04 + 0,14 \cdot 2,5) + 2,5^2 = 19,18$$

$$\varphi = 0,5 \frac{\delta - \sqrt{\delta^2 - 39,48 \cdot \bar{\lambda}^2}}{\bar{\lambda}^2} = 0,5 \frac{19,18 - 11}{6,25} = 0,704,$$

где
$$\sqrt{\delta^2 - 39,48 \cdot \bar{\lambda}^2} = 11.$$

Определяем напряжение в усиленном сечении:

$$\sigma = \frac{N}{\varphi A R_y \gamma_c} = \frac{673.7}{0.704 \cdot 48.72 \cdot 24 \cdot 0.95} = 0.861 < 1.$$

Устойчивость обеспечена.

Крепление усиливающего элемента выполняем на сварке длиной 3 м. Привязку этого элемента выполняем по данным.

Усиление нижнего пояса стержня (д-7)

Усилие N=630,51 кH

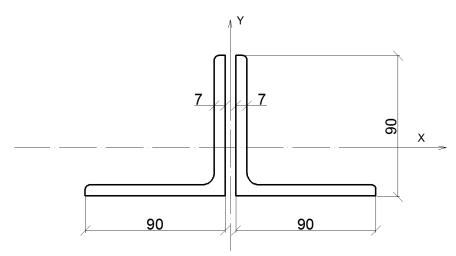


Рис. 9.5. Фактическое поперечное сечение нижнего пояса стропильной фермы

Площадь сечения уголков после коррозии:

$$A = 2 [9 \cdot 0.7 + 8.3 \cdot 0.7] = 24.22 \text{ cm}^2.$$

Проверяем прочность:

$$\sigma = \frac{N}{A_k \gamma_c} = \frac{630,51}{0,95 \cdot 24,22} = 27,4 \frac{\kappa H}{cm^2} > 24 \frac{\kappa H}{cm^2}.$$

Прочность обеспечена.

Нижний пояс усилим следующим образом

Усиление пояса 80х5 мм.

Площадь усиления из двух листов:

$$A_y = 2 (8 \cdot 0.5) = 8 \text{ cm}^2.$$

Площадь усиления уголка:

$$A_{\kappa} = A + A_{\kappa} = 24,88 + 8 = 32,22 \text{ cm}^2.$$

Проверяем прочность:

$$\frac{N}{A_n R_y \gamma_c} = \frac{630,51}{32,22 \cdot 24 \cdot 0,95} = 0,85 < 1.$$

Прочность обеспечена.

Усиление сквозного узлового соединения (а-б)

Усиление, действующее на узловое соединение

$$N = 405,94 \text{ kH}.$$

Это усиление воспринимается

$$-$$
 пером N_{π} = 121,7 кH;

$$-$$
 обушком $N_{\text{oб}} = 284,16$ кH.

Это усиление приведено в таблице.

В данной таблице приведены катеты шва, а также длина сварного шва.

Обследование фермы показало, что катет шва

– на пере
$$K_f = 5$$
 мм;

$$-$$
 на обушке $K_f = 7$ мм.

Длина швов – 8 см.

Длина шва обушка по металлу шва:

$$l_{\text{o6}} = \frac{N}{nK_f \beta_f \gamma_{\omega f} R_{\omega f} \gamma_c} + a = \frac{284,16}{2 \cdot 0,7 \cdot 16 \cdot 0,95} + 2 = 15 > 12 \text{ cm,}$$

где $\beta_f \gamma_{\omega f} R_{\omega f} = 16$ кН.

Прочность сварного шва не обеспечена.

Увеличиваем длину сварного шва путем увеличения размера фасонки.

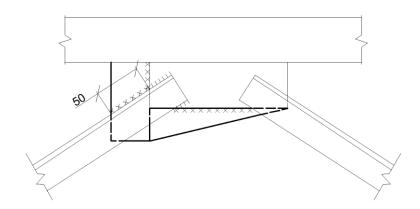


Рис. 9.6. Фрагмент сквозного узлового соединения

Прочность сварного шва по металлу шва по обушку изменяется и составляет 17 см и катет шва при этом равен 0,7 см. Проверяем прочность сварного шва:

$$\sigma = \frac{N}{nK_f\beta_f\gamma_{\omega f}\gamma_c l} + a = \frac{284,16}{2\cdot 0,7\cdot 0,9\cdot 1\cdot 0,95\cdot 17} = 14 \frac{\kappa H}{cm^2} < R_{\omega f} = 18 \frac{\kappa H}{cm^2}$$

Прочность сварного шва обеспечена.

Список литературы

- 1. СП 16.13330.2017 Стальные конструкции. Актуализированная редакция СНиП II-23-81*. М.: Министерство регионального развития РФ, 20171.-171 с.
- 2. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. М.: Министерство регионального развития РФ, 20161.-80 с.
- 3. Кудишин Ю.И. Металлические конструкции: Учебник для студ. учреждений высш. проф. образования / Ю.И. Кудишин, Е.И. Беленя, В.С. Игнатьева. М.: ИЦ Академия, 2011. 688 с.
- 4. Металлические конструкции. Конструкции зданий. Т. 1–3 / под ред. В.В. Горева. М.: Высшая школа, 1999.
- 5. Металлические конструкции / под общ. ред. Е.И. Беленя. М.: Стройиздат, 1975.-424 с.
- 6. Расчет стальных конструкций при их обследовании и усилении: учебно-методическое пособие / П.С. Иванов, А.А. Югов. М: Издательство $T\Gamma ACY$, 2016. 69 с.

приложения

Приложение 1

Индивидуальное задание к занятию № 1 «Поверочный расчет ослабленного элемента при действии продольной силы с изгибом»

№ п/п	Сечение элемента	Предел текучести, МПа	Год строи- тельства	Площадь ослабления	у ^{осл} ,	<i>М_х,</i> кН∙ м	N, кН
1	Двутавр №20	245	1995	2,5	8,75	87	300
2	Двутавр №25	200	1931	2,7	11,2	95	312
3	Двутавр №35	280	1965	2,9	16,1	115	423
4	Двутавр №40	290	2001	3,1	18,5	136	420
5	Двутавр №45	170	1925	3,9	20,5	155	470
6	Двутавр №50	260	1949	6,2	21,9	160	500
7	Двутавр №55	310	1985	6,9	24,1	180	500
8	Двутавр №60	230	1998	7,3	26,4	175	510
9	Двутавр №70	280	2005	8,1	31,0	87	300
10	Швеллер №20	380	1995	2,5	8,7	95	312
11	Швеллер №22	200	1931	2,7	9,6	115	423
12	Швеллер №24	280	1965	2,9	10,5	136	420
13	Швеллер №27	380	2001	3,1	11,9	155	470
14	Швеллер №30	170	1925	3,9	13,1	160	500
15	Швеллер №33	260	1949	6,2	13,4	180	500
16	Швеллер №36	310	1985	6,9	14,5	175	510

17	Швеллер №40	230	1998	7,3	16,4	87	300
18	Швеллер №30Ш	280	2005	4,1	13,0	95	312
19	Швеллер №40Ш	245	1995	4,5	17,8	115	423
20	Швеллер №45Ш	200	1931	5,7	19,7	136	420

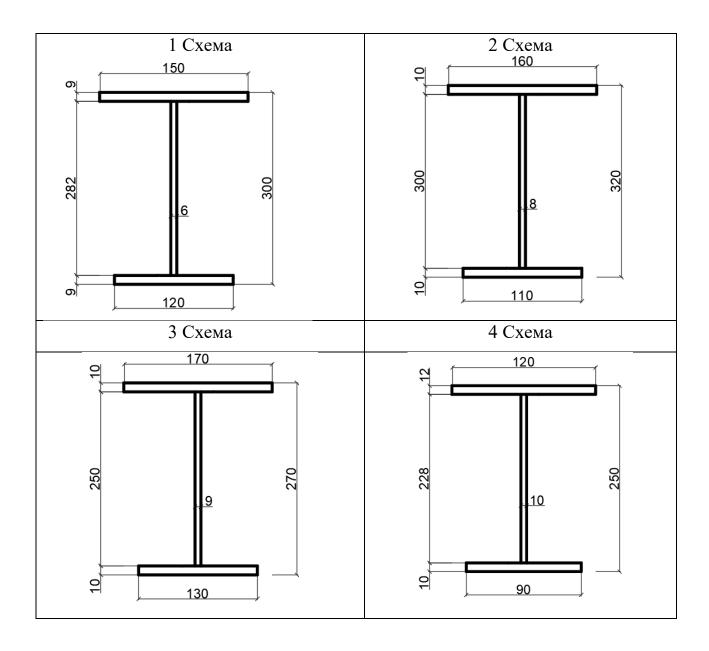
Индивидуальное задание к занятию № 2 «Поверочный расчет искривленной стойки»

№ п/п	Сечение элемента	Предел текучести, МПа	Расчетная длина элемента, см	Искривление стойки, см	Глубина коррозии, м	Нагрузка по обмерам кН
1	Двутавр №40К2	345	800	6,5	2,0	1500
2	Двутавр №35К1	280	750	4,7	3,0	1600
3	Двутавр №30К1	280	590	2,9	1,6	700
4	Двутавр №25К3	220	730	3,1	2,8	750
5	Двутавр №20К1	196	550	3,9	2,2	650
6	Двутавр №70Б	340	930	6,2	2,8	1500
7	Двутавр №50Б	210	860	6,9	3,0	750
8	Двутавр №55Б	330	940	7,3	2,0	1700
9	Двутавр №30Б2	480	800	2,1	3,0	1600
10	Двутавр №18Б2	170	410	2,5	1,6	1300
11	Двутавр №25Б1	300	490	2,7	2,8	350
12	Двутавр №40Б2	280	730	2,9	2,2	1000
13	Двутавр №45Б1	150	550	3,1	2,8	1600
14	Двутавр №60Б2	250	930	3,9	3,0	2200

15	Двутавр №30Ш	280	860	4,2	2,0	700
16	Двутавр №40Ш	220	940	3,9	3,0	1500
17	Двутавр №45Ш	196	800	5,3	1,6	2000
18	Двутавр №30К1	340	750	4,1	2,8	1700
19	Двутавр №40К2	210	590	4,5	2,2	1450
20	Двутавр №40К5	330	730	5,7	2,8	1650

Индивидуальное задание к занятию № 3 «Поверочный расчет раскоса фермы с погибью»

No	Сечение	Длина	Искривле-	Искривле-	Локальная	Локальная	Предел	N,
Π/Π	элемента	элемента,	ния $f_{u_{3,x}}$, см	ния $f_{u_{3,y}}$, см	погибь пол-	погибь	текучести,	кН
		см			ки $l_{\scriptscriptstyle M}$, см	полки $l_{\text{ом}}$,	Мпа	
						СМ		
1	2L50x5	325	2,3	-1,7	18,75	2,9	245	105
2	2L63x6	373	2,9	-1,5	11,2	3,2	180	120
3	2L75x5	402	3,1	-2,0	16,1	3,4	200	95
4	2L80x8	453	2,9	-1,22	18,5	3,6	290	115
5	2L40x4	225	1,4	-1,05	20,5	2,9	170	105
6	2L56x4	305	1,85	-1,6	21,9	3,2	250	120
7	2L35x3	190	1,9	-1,1	24,1	3,4	210	95
8	2L50x8	336	2,3	-1,7	26,4	3,6	230	115
9	2L50x5	325	2,9	-1,5	31,0	2,9	180	105
10	2L63x6	373	3,1	-2,0	8,7	3,2	280	120
11	2L75x5	402	2,9	-1,22	9,6	3,4	200	95
12	2L80x8	453	1,4	-1,05	10,5	3,6	280	115
13	2L63x4	225	1,85	-1,6	11,9	2,9	180	105
14	2L56x4	305	1,9	-1,1	13,1	3,2	170	120
15	2L35x3	190	2,3	-1,7	13,4	3,4	260	95
16	2L50x8	336	2,9	-1,5	14,5	3,6	240	115
17	2L50x5	325	3,1	-2,0	16,4	2,9	230	105
18	2L63x6	373	2,9	-1,22	13,0	3,2	250	120
19	2L75x5	402	1,4	-1,05	17,8	3,4	245	95
20	2L80x8	453	1,85	-1,6	19,7	3,6	200	115

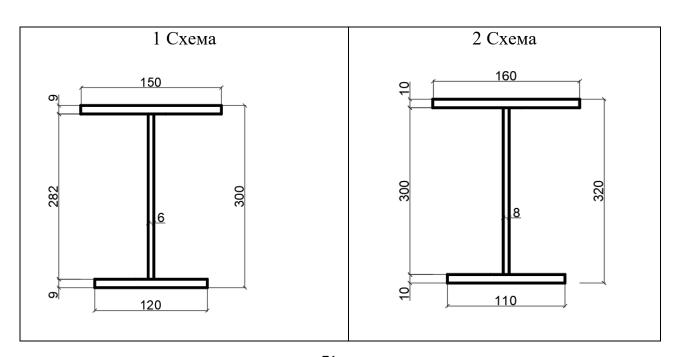

Индивидуальное задание к занятию № 4 «Усиление изгибаемого элемента»

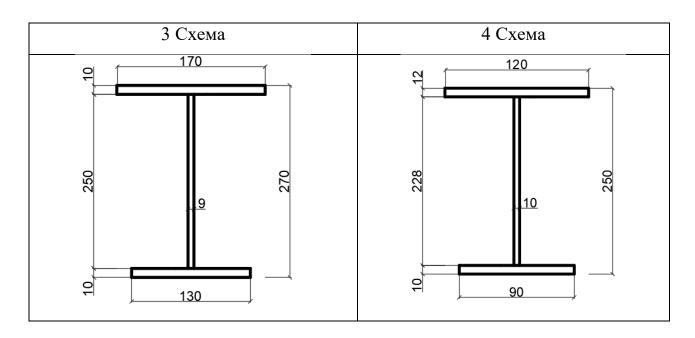
№ π/π	Пролет траверсы, м	Сталь класса прочности	Профиль
1	8	C245	200x120x5
2	6	C255	220x100x6
3	5	C275	200x80x7
4	10	C345	180x100x7
5	11	C375	160x120x6
6	9	C285	200x100x5
7	8	C235	220x140x5
8	12	C245	180x80x7
9	6	C255	160x140x6
10	5	C275	180x140x7
11	7	C345	200x120x5
12	9	C375	220x100x6
13	12	C285	200x80x7
14	10	C235	180x100x7
15	11	C245	160x120x6
16	6	C255	200x100x5
17	7	C275	220x140x5
18	8	C345	180x80x7
19	9	C375	160x140x6
20	10	C285	180x140x7

Индивидуальное задание к занятию № 5 «Расчет усиления по критерию краевой текучести»

№ п/п	Номер схемы	$\frac{R_{yo}}{\kappa H}$	R_{yr} $\frac{\kappa H}{c m^2}$.	<i>М</i> ₀ кН·м	Δ <i>М</i> кН∙ м
1	1	23	20	75	40
2	2	40	30	800	30
3	3	18	16	50	60
4	4	25	20	150	45
5	1	30	27	110	20
6	2	27	25	85	65
7	3	48	40	650	30
8	4	21	19	75	40
9	1	23	20	100	30
10	2	40	30	50	60
11	3	18	16	150	45

12	4	25	20	110	20
13	1	30	27	85	65
14	2	27	25	65	30
15	3	48	40	75	40
16	4	21	19	100	30
17	1	23	20	50	60
18	2	40	30	150	45
19	3	18	16	110	20
20	4	25	20	85	65




Индивидуальное задание к занятию № 6 «Расчет усиления центрально-сжатой стойки из расчета на устойчивость»

№ п/п	Высота стойки, м	Расчетная сжимающая сила, N_0 , кН	Усиление от дополнительной нагрузки, ΔN , кН	$\frac{R_{yo}}{\kappa H}$	R_{yr} $\frac{\kappa H}{c m^2}$	Сечение Элементов
1	6	700	300	23	20	Швеллер №20
2	7	600	312	40	30	Швеллер №18
3	8	800	423	18	16	Швеллер №24
4	9	500	420	25	20	Швеллер №27
5	10	600	470	30	27	Швеллер №30
6	6	700	500	27	25	Швеллер №16
7	7	800	900	48	40	Швеллер №24
8	8	400	250	21	19	Швеллер №22
9	9	750	300	23	20	Швеллер №27
10	10	850	312	40	30	Швеллер №20
11	6	800	423	18	16	Швеллер №22
12	7	700	420	25	20	Швеллер №24
13	8	650	470	30	27	Швеллер №27
14	9	550	600	27	25	Швеллер №30
15	10	600	500	48	40	Швеллер №33
16	6	850	510	21	19	Швеллер №36
17	7	1700	500	23	20	Швеллер №40
18	8	750	812	40	30	Швеллер №24
19	9	650	423	18	16	Швеллер №27
20	10	500	420	25	20	Швеллер №30

Индивидуальное задание к занятию № 7 «Расчет прогиба усиленной балки с учетом остаточного прогиба»

№ п/п	Расчетная длина балки, м	$q_{ m o}^{ m H} \over { m \kappa H}$	$\frac{\Delta q^{\text{H}}}{\frac{\kappa \text{H}}{\text{M}}}$	Номер схемы	R_{yo} $\frac{\kappa H}{c^2}$	R_{yr} $\frac{\kappa H}{c M^2}$	<i>М</i> ₀ кН⋅м	Δ <i>M</i> кН∙ м
1	6	23	7	1	23	20	75	40
2	7	40	8	2	40	30	800	30
3	8	18	9	3	18	16	50	60
4	9	25	10	4	25	20	150	45
5	10	30	5	1	30	27	110	20
6	6	27	4	2	27	25	85	65
7	7	48	6	3	48	40	650	30
8	8	21	5	4	21	19	75	40
9	9	23	4	1	23	20	100	30
10	10	40	9	2	40	30	50	60
11	6	18	7	3	18	16	150	45
12	7	25	8	4	25	20	110	20
13	8	30	10	1	30	27	85	65
14	9	27	9	2	27	25	65	30
15	10	48	5	3	48	40	75	40
16	6	21	6	4	21	19	100	30
17	7	23	7	1	23	20	50	60
18	8	40	8	2	40	30	150	45
19	9	18	9	3	18	16	110	20
20	10	25	10	4	25	20	85	65

Индивидуальное задание к занятию № 8 «Расчет и конструирование стропильной фермы из гнутосварных профилей»

Исходные данные. Очертание решетки – фермы с параллельными поясами высотой по наружным граням поясов 2000 мм. Уклон верхнего пояса 1,5%. Опирание на колонны – шарнирное. Пролет фермы 18 м. Шаг ферм 6м.

№ п/п	Сталь класса	Класс ответ- ственности зда-	Расчетная узло ферму	у, кН	Горизонтальная рамная нагрузка, кН
	прочности	кин	Постоянная	Снеговая	
1	C245	I	232,8	220,2	700
2	C255	II	245,6	250,3	600
3	C275	III	256,8	215,2	800
4	C345	II	266,3	225,6	500
5	C375	III	270,6	218,5	600
6	C285	I	284,5	230,5	700
7	C235	III	294,4	257,1	800
8	C245	II	286,4	216,8	650
9	C255	I	210,3	241,1	750
10	C275	III	235,1	237,5	850
11	C345	I	265,2	233,1	800
12	C375	II	304,5	212,2	700
13	C285	II	315,2	199,6	650
14	C235	III	324,9	185,6	550
15	C245	I	297,1	200,4	600
16	C255	II	284,2	230,2	850
17	C275	III	288,6	211,1	700
18	C345	I	231,3	274,3	750
19	C375	II	255,8	228,4	650
20	C285	I	299,5	218,5	500

Индивидуальное задание к занятию № 9 «Расчет и конструирование стропильной фермы из уголков»

Исходные данные. Очертание решетки — ферма с параллельными поясами высотой по обушкам уголков 3150 мм. Покрытие из сборных железобетонных ребристых плит размером 6х3 м. Пролет фермы 24 м. Шаг ферм 6м.

№ п/п	Материал элементов фермы	Материал фасонок	Класс ответ- ственности здания	Расчетная постоянная узловая сила на ферму, кН	Снеговой район
1	C245	C255	I	232,8	I
2	C245	C275	I	245,6	II
3	C245	C245	I	256,8	III
4	C245	C255	I	266,3	IV
5	C245	C275	I	270,6	V
6	C245	C245	II	284,5	II
7	C245	C255	II	294,4	III
8	C255	C275	II	286,4	IV
9	C255	C245	II	210,3	V
10	C255	C255	II	235,1	VI
11	C255	C275	II	265,2	III
12	C255	C245	II	304,5	I
13	C255	C255	II	315,2	II
14	C275	C275	II	324,9	III
15	C275	C245	I	297,1	IV
16	C275	C255	I	284,2	V
17	C275	C275	I	288,6	I
18	C275	C245	I	231,3	II
19	C275	C255	I	255,8	III
20	C275	C275	I	299,5	IV

Расчетные сопротивления стали, сварных и болтовых соединений, кH/см²

Таблица В.5 Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе истового, широкополосного универсального и фасонного проката

Сталь по	Толщина	Нормативно	е сопротивле-	Расчетное сопро	тивление*** про-	
ГОСТ	проката*,	ние** проката, Н/мм²		ката, Н/мм ²		
27772	MM	mre mpe		nara,	11/1/11/1	
		R_{yn}	R_{un}	R_y	R_u	
C235	От 2 до 8	235	360	230/225	350/345	
C245	" 2 " 20	245	370	240/235	360/350	
	Св. 20 " 30	235	370	230/225	360/350	
C255	От 2 " 20	245	370	240/235	360/350	
	Св. 20 " 40	235	370	230/225	360/350	
C285	От 2 " 10	275	390	270/260	380/370	
	Св. 10 " 20	265	380	260/250	370/360	
C345	От 2 " 20	325	470	320/310	460/450	
	Св. 20 " 40	305	460	300/290	450/440	
	" 40 " 80	285	450	280/270	440/430	
	" 80 " 100	265	430	260/250	420/410	
С345К	От 4 " 10	345	470	335/330	460/450	
C375	" 2 " 20	355	490	345/340	480/465	
	Св. 20 " 40	335	480	325/320	470/455	
C390	От 4 " 50	390	540	380/370	525/515	
C440	" 4 " 30	440	590	430/420	575/560	
	Св. 30 " 50	410	570	400/390	555/540	
C590	От 10" 40	590	685	575/560	670/650	
С590К						
4 D	1	·-	_			

^{*} За толщину фасонного проката следует принимать толщину полки.

*** Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, определенные в соответствии с 3.2, с округлением до 5 Н/мм². В числителе представлены значения расчетных сопротивлений проката, поставляемого по ГОСТ 27772 (кроме стали С590К) или другой нормативной документации, в которой используется процедура контроля свойств проката по

ГОСТ 27772 (γ_m = 1,025), в знаменателе — расчетное сопротивление остального проката при γ_m = 1,050

^{**} За нормативное сопротивление приняты гарантированные значения предела текучести и временного сопротивления, приводимые в государственных стандартах или технических условиях. В тех случаях, когда эти значения в государственных стандартах или технических условиях приведены только в одной системе единиц – (кгс/мм²), нормативные сопротивления (H/мм²) вычислены умножением соответствующих величин на 9,81 с округлением до 5 H/мм². По согласованию с организацией – составителем норм допускается применение значений нормативных сопротивлений, отличных от приведенных в настоящей табл. В.5.

 Таблица В.6

 Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе труб

Марка стали	ГОСТ	Толщина	Нормати	вное со-	Расчетное	сопротив-
		стенки, мм	против		ление, 1	Н/мм ²
			Н/мм ²		,	
			R_{yn}	R_{un}	R_y	R_u
ВСт3кп,	ГОСТ 10705	До 10	225	370	215	350
ВСт3пс,						
ВСт3сп						
ВСт3пс4,	ГОСТ 10706	4-15	245	370	235	350
Ст3сп4,						
20	ГОСТ 8731	4-36	245	410	225	375

- 1. Нормативные сопротивления для труб из стали марки 09Г2С по ГОСТ 8731 устанавливаются по соглашению сторон в соответствии с требованиями этого стандарта; расчетные сопротивления согласно 5.2 настоящих норм.
- 2. Для труб марок сталей и толщин, поставляемых по другим стандартам и ТУ, допускается назначение нормативных и расчетных сопротивлений по согласованию с организацией составителем норм

Таблица Г.5 Нормативные сопротивления стали болтов и расчетные сопротивления одноболтовых соединений срезу и растяжению, ${\rm H/mm}^2$

Класс прочности болтов ГОСТ Р 52627	R_{bun}	R_{byn}	R_{bs}	R_{bt}
5,6	500	300	210	225
5,8	500	400	210	_
8,8	830	665	330	450
10,9	1040	935	415	560
12,9	1220	1100	425	_

Таблица Г.6 Расчетные сопротивления смятию элементов, соединяемых болтами

Временное сопротивление стали соединяемых элементов R_{un} , $H/\text{мм}^2$		R_{bp} , H/мм ² , смятию элементов, мых болтами
	классов точности А	классов точности В
360	560	475
370	580	485
380	590	500
390	610	515
430	670	565
440	685	580
450	700	595
460	720	605
470	735	620
480	750	630
490	765	645
510	795	670
540	845	710
570	890	750
590	920	775

Примечание. Значения расчетных сопротивлений, указанные в таблице, вычислены по формулам раздела 4 настоящих норм с округлением до 5 H/мм²

Площади сечения болтов

1	аолица	1.9

$d_{, \text{MM}}$	16	(18)	20	(22)	24	(27)	30	36	42	48
A_b , cm ²	2,01	2,54	3,14	3,80	4,52	5,72	7,06	10,17	13,85	18,09
A_{bn} , cm ²	1,57	1,92	2,45	3,03	3,53	4,59	5,61	8,16	11,20	14,72

- 1. Площади сечения болтов диаметром свыше 48 мм следует принимать по ГОСТ 24379.1.
- 2. Размеры, заключенные в скобки, не рекомендуется применять в конструкциях, кроме опор ВЛ и \mbox{OPY}

Материалы для соединений стальных конструкций

Таблица Г.1 Материалы для сварки, соответствующие стали

Сталь		Мате	риалы для с	варки	
	в углекис-	под флюсом	(πο ΓΟСΤ	порошковой	покрытыми
	лом газе	908′	7)	проволокой	электродами
	(по ГОСТ			(по ГОСТ	(по ГОСТ
	8050) или в			26271)	9467)
	его смеси с				
	аргоном				
	(по ГОСТ				
	10157)				
		Map	ка		Тип элек-
					трода
		роволоки для	флюса	порошковой	
		ской и меха-		проволоки	
		ой сварки (по			
		2246)			
$R_{yn} <_{290 \text{ H/mm}}^2$	Св-08Г2С	Св-08А	AH-348-A	ПП-АН-3	Э42*, Э42A
2 / 0 11/ WIWI			AH-60*	ПП-АН-8	
			ПФК-		
			56C****		
		Св-08ГА			Э46*, Э46А
• • • • • • • • • • • • • • • • • • • •		G 107 Litel			D #0.1: D #0.1
290		Св-10ГА**	AH-17-M		Э50*, Э50A
$H/_{MM}$ $2 \le R_{yn} < 590$			AH-43		
Н/мм ²			AH-47		
H/MM			AH-348- A***		
			ПФК-		
			11ΨK- 56C****		
		Св-10Г2**	300		
		Св-101 2 · · · Св-10НМА			_
ר כ ס	Св-08Г2С	Св-10НМА	AH-17-M	ПП-АН-3	Э60
$R_{yn} \ge 590 \text{ H/mm}^2$	CB-001 2C	CB-1011IVIA	ПФК-	ПП-АН-8	300
	08ХГСМА		56C****	1111 7111 0	
	00211 011111				
	Св-	Св-			Э70
	10XΓ2CMA	08ХН2ГМЮ			2,0
	242.2	16 5 50	l .		

^{*} Флюс АН-60 и электроды типа Э42, Э46, Э50 следует применять для конструкций групп 2, 3 при расчетных температурах $t \ge$ -45 °C.

Примечание. При соответствующем технико-экономическом обосновании для сварки конструкций разрешается использовать сварочные материалы (проволоки, флюсы, защитные газы), не указанные в настоящей таблице. При этом механические свойства металла шва, выполняемого с их применением, должны быть не ниже свойств, обеспечиваемых применением материалов согласно настоящей таблице

^{**} Не применять в сочетании с флюсом АН-43.

^{***} Для флюса АН-348-А требуется дополнительный контроль механических свойств металла шва при сварке соединений элементов всех толщин при расчетных температурах t < -45 °C и толщин свыше 32 мм – при расчетных температурах $t \ge -45$ °C.

^{****} Керамический флюс по TУ 59295-001-56315282-2004.

Нормативные и расчетные сопротивления металла швов сварных соединений с угловыми швами

Сва	рочные материалы	R _{wun} , H/мм ²	$R_{ m wf}$, $_{ m H/_{MM}}^{ m 2}$
тип электрода (по ГОСТ 9467)	марка проволоки		
Э42, Э42A	Св-08, Св-08А	410	180
Э46, Э46A	Св-08ГА,	450	200
Э50, Э50A	Св-08Г2С, Св-10ГА, ПП-АН-8, ПП-	490	215
	AH-3		
Э60	Св-08Г2С*, Св-10НМА, Св-10Г2	590	240
Э70	Св-10ХГ2СМА, Св-08ХН2ГМЮ	685	280
Э85	_	835	340

^{*} Только для швов с катетом kf $^{\leq}8$ мм в конструкциях из стали с пределом текучести 440 Н/мм 2 и более

Таблица 38

Таблица Г.2

Вид соединения	Вид сварки	Предел текучести стали, 2 H/мм		Минимальный катет шва k_f , мм, при толщине более толстого из свариваемых элементов t , мм					
			4-5	6-10	11-16	17-22	23-32	33-40	41-80
Тавровое с двусторонними угловыми швами	Ручная дуговая	До 285	4	4	4	5	5	6	6
Нахлесточное и угловое									
		Св. 285 до 390	4	5	6	7	8	9	10
		" 390 " 590	5	6	7	8	9	10	12
	Автомати- ческая и механизи- рованная	До 285	3	4	4	5	5	6	6
		Св. 285 до 390	3	4	5	6	7	8	9
		" 390 " 590	4	5	6	7	8	9	10
Тавровое с односторонними угловыми швами	Ручная дуговая	До 375	5	6	7	8	9	10	12
	Автомат. и механ.	1	4	5	6	7	8	9	10

^{1.} В конструкциях из стали с пределом текучести свыше $590~{\rm H/mm}^2$, а также из всех сталей при толщине элементов более $80~{\rm mm}$ минимальный катет швов следует принимать по специальным техническим условиям.

^{2.} В конструкциях группы 4 минимальный катет односторонних угловых швов следует уменьшать на 1 мм при толщине свариваемых элементов до 40 мм и на 2 мм – при толщине элементов свыше 40 мм

Таблица 39

Вид сварки при диаметре сварочной проволоки сплошного сечения d , мм	Положение шва	Коэффициент	β_z	Значения коэффициентов β_z при нормальных режсварки и катетах швов,		х режимах
			3-8	9-12	14-16	св. 16
Автоматическая $_{\text{при }}d = 3-5$	В лодочку	β_f		1,1		0,7
		β_z		1,15		1,0
	Нижнее	β_f	1,1	0,9		0,7
		β_z	1,15	1,	05	1,0
Автоматическая и механизированная $\pi_{pu} d = 1,4-2$	В лодочку	β_f	(),9	0,8	0,7
		βς	1	,05		1,0
	Нижнее, горизонтальное, вертикальное	β_f	0,9	0,8		0,7
		β_z	1,05		1,0	
Ручная и механизированная при $d \le 1,4$ или порошковой проволокой	В лодочку	β_f			0,7	
	Нижнее, горизонтальное, вертикальное, потолочное	β_z			1,0	

Приложение 3

Коэффициенты для расчета на устойчивость центрально- и внецентренно-сжатых элементов

Таблица Д.1 Коэффициенты устойчивости при центральном сжатии

Условная гибкость $\overline{\lambda}$	Коэффи	циенты arphi для типа	сечения
	а	ь	с
0,4	999	998	992
0,6	994	986	950
0,8	981	967	929
1,0	968	948	901
1,2	954	927	878
1,4	938	905	842
1,6	920	881	811
1,8	900	855	778
2,0	877	826	744
2,2	851	794	709
2,4	820	760	672
2,6	785	722	635
2,8	747	683	598
3,0	704	643	562
3,2	660	602	526
3,4	615	562	492
3,6	572	524	460
3,8	530	487	430
4,0	475	453	401
4,2	431	421	375
4,4	393	392	351
4,6	359	359	328
4,8	330	330	308
5,0	304	304	289
5,2	281	281	271
5,4	26	51	255
5,6	24	12	240
5,8		226	
6,0		211	
6,2		198	
6,4		186	
6,6		174	
6,8		164	
7,0		155	
7,2		147	
7,4		139	
7,6		132	
7,8		125	

8,0	119
8,5	105
9,0	094
9,5	084
10,0	076
10,5	069
11,0	063
11,5	057
12,0	053
12,5	049
13,0	045
14,0	039
Примечание. Значения коэфо	фициентов φ в таблице увеличены в 1000 ра.

Тип се- че- ния	Схема сечения и эксцентриситет	$\frac{A_f}{A_W}$	Зн	ачения ^η п	іри	
			$_{0,1} \leq m \leq _{5}$	5 < <i>m</i> ≤ 20	$\leq m^{0,1} \leq m^{1} \leq 1$	5 < <i>m</i> ≤ 20
1			1,0	1,0	1,0	
2	$\frac{t}{h} = 0.25$	-	0,85	0,85	0,85	
3		-	$_{0,75+0,02}\overline{\lambda}$	0,75+0,02 \(\overline{\lambda} \)	0,85	
4	$\frac{t}{h} = 0.25$		$(1,35-0,05m)-0,01(5-m)\overline{\lambda}$	1,1	1,1	
5	$A_{v} = \begin{bmatrix} \overline{a}_{1} & 0 & 0.5A_{1} & 0 & A_{1} & 0 \\ A_{w} & \overline{h} & 0.15 & 0.5A_{w} & 0.5A_{w} & 0.5A_{w} & 0.5A_{w} \end{bmatrix}$	0,25	(1,45 − 0,05m) − 0,01(5 − m)\(\bar{\lambda}\)	1,2	1,2	
		0,5	$(1,75-0,1m)-0,02(5-m)\overline{\lambda}$	1,25	1,25	
		≥ ₁ ,	(1,90 - 0,1m) - 0,02(6 - m)7	λ 1,4-0,02 λ	1,3	

6	$A_{\ell} \bullet \longrightarrow$	-	[, , 3/5 ,]	η5	η5	
	$\frac{a_1}{h} \leqslant 0.15$		$\eta_5 \left[1 - 0.3(5 - m) \frac{a_1}{h} \right]$.,	.,	
7	$\frac{a_1}{h} \leqslant 0.15$	-	$\eta_5 \left(1 - 0.8 \frac{a_1}{h} \right)$	$\eta_5 \left(1 - 0.8 \frac{a_1}{h} \right)$	$\eta_5 \bigg(1 - 0,$	$8\frac{a_1}{h}$
8		0,25	$(0.75 + 0.05m) - 0.01(5 - m)\overline{\lambda}$	1,0	1,0	
		0,5	$(0.5 + 0.1m) + 0.02(5 - m)\overline{\lambda}$	1,0	1,0	
		≥1	$(0,25+0,15m)+0,03(5-m)\overline{\lambda}$	1,0	1,0	
9		0,5	$(1,25-0,05m)-0,01(5-m)\overline{\lambda}$	1,0	1,0	
		≥ 1	$(1,5-0,1m)-0,02(5-m)\overline{\lambda}$	1,0	1,0	
10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,5	1,4	1,4	1,4	1,4
		1,0	1,6 - 0,01(5 - m)λ	1,6	1,35+0,05 <i>m</i>	1,6
		2,0	1,8 - 0,02(5 - m)λ	1,8	1,3+0,1 ^m	1,8
11	0,5A,	0,5	1,45 + 0,04m	1,65	1,45+0,04 <i>m</i>	1,65
		1,0	1,8 + 0,12m	2,4	1,8+0,12 M	2,4
		1,5	$2,0 + 0,25m + 0,1\lambda$	-	-	-
		2,0	$3,0 + 0,25m + 0,1\lambda$	-	-	_

- 1. Для типов сечений 5–7 при подсчете значений $^{A_f/A_{\rm W}}$ площадь вертикальных элементов полок не следует учитывать.
- 2. Для типов сечений 6—7 значения $^{\eta}{}_{5}$ следует принимать равными значениям $^{\eta}$ для типа 5 при тех же значениях A_f / $A_{\rm w}$

Таблица Д.3 Коэффициенты устойчивости $\varphi_{\mathfrak{g}}$ при внецентренном сжатии сплошностенчатых стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная гибкость $\overline{\lambda}$	Значе	ение ^Ф в пр	и привед	денном (относит	гельном	эксцент	риситете	e ^m ef
	0,1	0,25	0,5	0,75	1,0	1,25	1,5	1,75	2,0
0,5	967	922	850	782	722	669	620	577	538
1,0	925	854	778	711	653	600	563	520	484
1,5	875	804	716	647	593	548	507	470	439
2,0	813	742	653	587	536	496	457	425	397
2,5	742	672	587	526	480	442	410	383	357
3,0	667	597	520	465	425	395	365	342	320
3,5	587	522	455	408	375	350	325	303	287
4,0	505	447	394	356	330	309	289	270	256
4,5	418	382	342	310	288	272	257	242	229
5,0	354	326	295	273	253	239	225	215	205
5,5	302	280	256	240	224	212	200	192	184
6,0	258	244	223	210	198	190	178	172	166
6,5	223	213	196	185	176	170	160	155	149
7,0	194	186	173	163	157	152	145	141	136
8,0	152	146	138	133	128	121	117	115	113
9,0	122	117	112	107	103	100	098	096	093
10,0	100	097	093	091	090	085	081	080	079
11,0	083	079	077	076	075	073	071	069	068
12,0	069	067	064	063	062	060	059	059	058
13,0	062	061	054	053	052	051	051	050	049
14,0	052	049	049	048	048	047	047	046	045

Продолжение табл. Д.3

Условная гибкость $\overline{\lambda}$	Значе	Значение $\varphi_{\mathfrak{g}}$ при приведенном относительном эксцентриситете $m_{\mathfrak{g}f}$								
	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	
0,5	469	417	370	337	307	280	260	237	222	
1,0	427	382	341	307	283	259	240	225	209	
1,5	388	347	312	283	262	240	223	207	195	
2,0	352	315	286	260	240	222	206	193	182	
2,5	317	287	262	238	220	204	190	178	168	
3,0	287	260	238	217	202	187	175	166	156	
3,5	258	233	216	198	183	172	162	153	145	
4,0	232	212	197	181	168	158	149	140	135	
4,5	208	192	178	165	155	146	137	130	125	
5,0	188	175	162	150	143	135	126	120	117	
5,5	170	158	148	138	132	124	117	112	108	
6,0	153	145	137	128	120	115	109	104	100	
6,5	140	132	125	117	112	106	101	097	094	
7,0	127	121	115	108	102	098	094	091	087	
8,0	106	100	095	091	087	083	081	078	076	
9,0	088	085	082	079	075	072	069	066	065	
10,0	075	072	070	069	065	062	060	059	058	
11,0	063	062	061	060	057	055	053	052	051	
12,0	055	054	053	052	051	050	049	048	047	
13,0	049	048	048	047	045	044	043	042	041	
14,0	044	043	043	042	041	040	040	039	039	

Окончание табл. Д.3

Условная гибкость	Значе	Значение $\varphi_{\mathfrak{g}}$ при приведенном относительном эксцентриситете $m_{\mathfrak{g}f}$									
$\overline{\lambda}$	7,0	8,0	9,0	10	12	14	17	20			
0,5	210	183	164	150	125	106	090	077			
1,0	196	175	157	142	121	103	086	074			
1,5	182	163	148	134	114	099	082	070			
2,0	170	153	138	125	107	094	079	067			
2,5	158	144	130	118	101	090	076	065			
3,0	147	135	123	112	097	086	073	063			
3,5	137	125	115	106	092	082	069	060			
4,0	127	118	108	098	088	078	066	057			
4,5	118	110	101	093	083	075	064	055			
5,0	111	103	095	088	079	072	062	053			
5,5	104	095	089	084	075	069	060	051			
6,0	096	089	084	079	072	066	057	049			
6,5	089	083	080	074	068	062	054	047			
7,0	083	078	074	070	064	059	052	045			
8,0	074	068	065	062	057	053	047	041			
9,0	064	061	058	055	051	048	043	038			
10,0	057	055	052	049	046	043	039	035			
11,0	050	048	046	044	040	038	035	032			
12,0	046	044	042	040	037	035	032	029			
13,0	041	039	038	037	035	033	030	027			
14,0	038	037	036	036	034	032	029	026			
Примечания	1		<u> </u>								

^{1.} Значения коэффициентов $\varphi_{\mathfrak{g}}$ в таблице увеличены в 1000 раз.

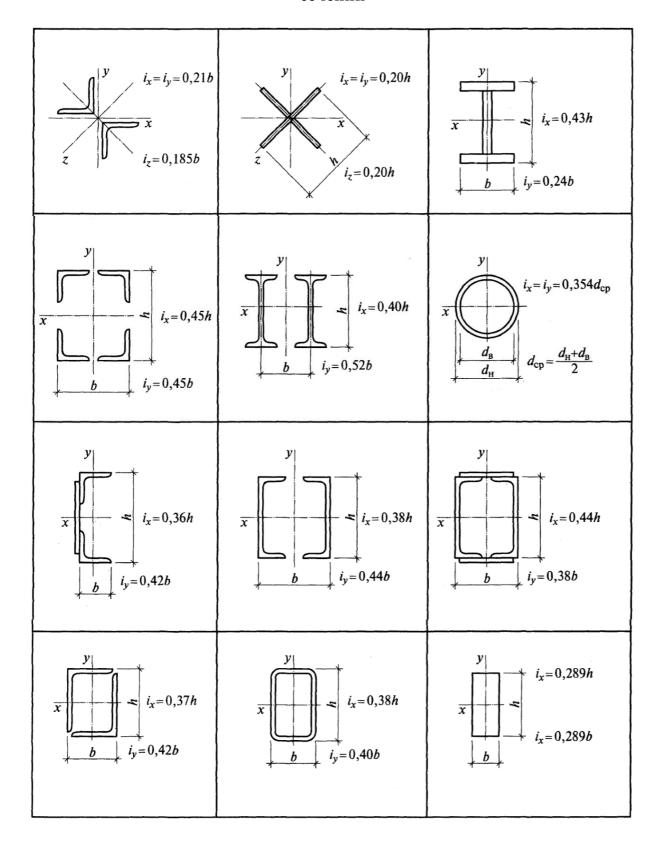
^{2.} Значения $\varphi_{\mathfrak{g}}$ следует принимать не выше значений φ

Таблица Д.4 Коэффициенты устойчивости $\varphi_{\mathfrak{g}}$ при внецентренном сжатии сквозных стержней в плоскости действия момента, совпадающей с плоскостью симметрии

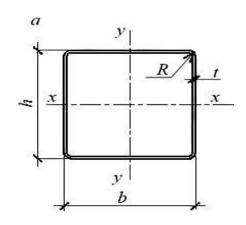
Условная	жости д	Значение [©] в при относительном эксцентриситете ^м									
приведенная	0,1	Знач 0,25	ение ^{ге} п 0,5	ри отно 0,75	сительном 1,0	л эксцен 1,25	трисите: 1,5	re <i>m</i> 1,75	2,0		
гибкость —	0,1	0,23	0,5	0,73	1,0	1,23	1,5	1,75	2,0		
$\overline{\lambda}_{\!e\!f}$											
0,5	908	800	666	571	500	444	400	364	333		
1,0	872	762	640	553	483	431	387	351	328		
1,5	830	727	600	517	454	407	367	336	311		
2,0	774	673	556	479	423	381	346	318	293		
2,5	708	608	507	439	391	354	322	297	274		
3,0	637	545	455	399	356	324	296	275	255		
3,5	562	480	402	355	320	294	270	251	235		
4,0	484	422	357	317	288	264	246	228	215		
4,5	415	365	315	281	258	237	223	207	196		
5,0	350	315	277	250	230	212	201	186	178		
5,5	300	273	245	223	203	192	182	172	163		
6,0	255	237	216	198	183	174	165	156	149		
6,5	221	208	190	178	165	157	149	142	137		
7,0	192	184	168	160	150	141	135	130	125		
8,0	148	142	136	130	123	118	113	108	105		
9,0	117	114	110	107	102	098	094	090	087		
10,0	097	094	091	090	087	084	080	076	073		
11,0	082	078	077	076	073	071	068	066	064		
12,0	068	066	064	063	061	060	058	057	056		
13,0	060	059	054	053	052	051	050	049	049		
14,0	050	049	048	047	046	046	045	044	043		
1	<u> </u>			<u> </u>	<u> </u>	1		I	1		

Продолжение табл. Д.4

Условная приведенная гибкость $\overline{\lambda}_{ef}$		Знач	ение [©] е п	ри отно	сительном	и эксцен	трисите	ге т	
0.5	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5
0,5	286	250	222	200	182	167	154	143	133
1,0	280	243	218	197	180	165	151	142	131
1,5	271	240	211	190	178	163	149	137	128
2,0	255	228	202	183	170	156	143	132	125
2,5	238	215	192	175	162	148	136	127	120
3,0	222	201	182	165	153	138	130	121	116
3,5	206	187	170	155	143	130	123	115	110
4,0	191	173	160	145	133	124	118	110	105
4,5	176	160	149	136	124	116	110	105	096
5,0	161	149	138	127	117	108	104	100	095
5,5	147	137	128	118	110	102	098	095	091
6,0	135	126	119	109	103	097	093	090	085
6,5	124	117	109	102	097	092	088	085	080
7,0	114	108	101	095	091	087	083	079	076
8,0	097	091	085	082	079	077	073	070	067
9,0	082	079	075	072	069	067	064	062	059
10,0	070	067	064	062	060	058	056	054	052
11,0	060	058	056	054	053	052	050	048	046
12,0	054	053	050	049	048	047	045	043	042
13,0	048	047	046	045	044	044	042	041	040
14,0	043	042	042	041	041	040	039	039	038

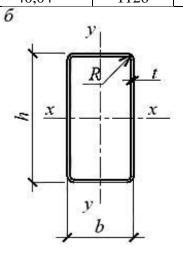

Окончание табл. Д.4

Условная приведенная гибкость $\bar{\lambda}_{\vec{y}}$		Значе	ние ^Ф в при	і относител	іьном эксц		те т	
	7,0	8,0	9,0	10	12	14	17	20
0,5	125	111	100	091	077	067	058	048
1,0	121	109	098	090	077	066	055	046
1,5	119	108	096	088	077	065	053	045
2,0	117	106	095	086	076	064	052	045
2,5	113	103	093	083	074	062	051	044
3,0	110	100	091	081	071	061	051	043
3,5	106	096	088	078	069	059	050	042
4,0	100	093	084	076	067	057	049	041
4,5	096	089	079	073	065	055	048	040
5,0	092	086	076	071	062	054	047	039
5,5	087	081	074	068	059	052	046	039
6,0	083	077	070	065	056	051	045	039
6,5	077	072	066	061	054	050	044	037
7,0	074	068	063	058	051	047	043	036
8,0	065	060	055	052	048	044	041	035
9,0	056	053	050	048	045	042	039	035
10,0	050	047	045	043	041	038	036	033
11,0	044	043	042	041	038	035	032	030
12,0	040	039	038	037	034	032	030	028
13,0	038	037	036	035	032	030	028	026
14,0	037	036	035	034	031	029	027	025


^{1.} Значения коэффициентов $\varphi_{\mathfrak{g}}$ в таблице увеличены в 1000 раз.

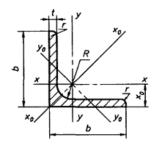
^{2.} Значения $\varphi_{\mathfrak{g}}$ следует принимать не выше значений φ

Приложение 4 Приближенные значения радиусов инерции $i = \sqrt{I/A}$ некоторых типов сечений

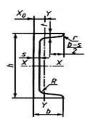


Сортаменты ГОСТ 30245-2003 «Профили стальные гнутые замкнутые сварные квадратные и прямоугольные для строительных конструкций»

h	b	t	Площадь по-	Справочні	ые величины	для осей	
			перечного се-		X-X		Macca
	мм 4 0		чения	J_x, J_y, cm^4	W_x, W_y, cm^3	i_x, i_y, c_M	1 м, кг
		4,0	11,75	111,0	27,74	3,07	9,22
		4,5	13,07	121,5	30,37	3,05	10,26
		5,0	14,36	131,3	32,83	3,02	11,27
		5,5	15,61	140,3	35,12	3,00	12,25
80	80	6,0	16,83	149,0	37,24	2,97	13,21
		6,5	17,66	151,0	37,76	2,92	13,86
		7,0	18,76	157,4	39,34	2,90	14,72
		7,5	19,82	163,0	40,76	2,87	15,56
		8,0	20,84	168,0	42,01	2,84	16,36
		4,0	13,35	161,8	35,96	3,48	10,48
		4,5	14,87	177,8	39,50	3,46	11,67
		5,0	16,36	192,8	42,84	3,43	12,84
		5,5	17,81	206,9	45,99	3,41	13,98
90	90	6,0	19,23	220,2	48,94	3,38	15,10
		6,5	20,26	225,3	50,07	3,34	15,90
		7,0	21,56	235,8	52,40	3,31	16,92
		7,5	22,82	245,4	54,54	3,28	17,91
		8,0	24,04	254,2	56,48	3,25	18,87
		4,0	14,95	225,1	45,02	3,88	11,73
		4,5	16,67	247,5	49,50	3,85	13,08
		5,0	18,36	270,9	54,19	3,84	14,41
		5,5	20,01	291,6	58,32	3,82	15,71
100	100	6,0	21,63	311,2	62,24	3,79	16,98
	6,5 7,0		22,86	320,6	64,12	3,75	17,94
			24,36	336,7	67,33	3,72	19,12
	7,5		25,82	351,6	70,32	3,69	20,27
		8,0	27,24	365,4	73,09	3,66	21,39

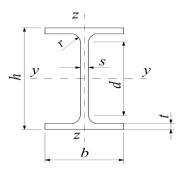

		4,0	18,15	402,2	67,03	4,71	14,25
		4,5	20,27	444,5	74,09	4,68	15,91
		5,0	22,36	485,3	80,88	4,66	17,55
		5,5	24,41	524,3	87,39	4,63	19,16
120	120	6,0	26,43	561,8	93,64	4,61	20,75
		6,5	28,06	584,6	97,43	4,56	22,03
		7,0	29,96	616,8	102,8	4,54	23,52
		7,5	31,82	647,3	107,9	4,51	24,98
		8,0	33,64	676,2	112,7	4,48	26,41
		4,0	21,35	651,1	93,07	5,52	16,76
		4,5	23,87	722,1	103,2	5,50	18,74
		5,0	26,36	790,3	112,9	5,48	20,69
		5,5	28,81	856,3	122,3	5,45	22,62
140	140	6,0	31,23	920,0	131,4	5,43	24,52
		6,5	33,26	963,6	137,7	5,38	26,11
		7,0	35,56	1020	145,7	5,36	27,91
		7,5	37,82	1074	153,5	5,33	29,69
		8,0	40,04	1126	160,8	5,30	31,43

h	b	t	Площадь	Сп	равочные	значен	ия величі	ин для ос	ей	Macca
	MM		поперечного		X-X			у-у		1 м, кг
			сечения А,	J_{r} , c_{M}^{4}	$W_{\rm r}$, cm ³	$i_{_X}$, c_M	J_{y} , см 4	W_{v} , cM^{3}	i_{v} , c_{M}	
			cm ²	χ,	χ,		y ·	y.	y.	
80	70	4,0	10,95	99,42	24,86	3,01	80,77	23,08	2,72	8,59
		4,5	12,17	108,7	27,17	2,99	88,20	25,20	2,69	9,55
		5,0	13,36	117,3	29,31	2,96	95,09	27,17	2,67	10,48
		5,5	14,51	125,2	31,30	2,94	101,5	28,98	2,64	11,39
		6,0	15,63	132,5	33,14	2,91	107,3	30,66	2,62	12,27
		6,5	16,36	133,5	33,37	2,86	108,2	30,92	2,57	12,84
		7,0	17,36	138,7	34,68	2,83	112,4	32,11	2,54	13,63
90	50	4,0	10,15	102,7	22,82	3,18	40,63	16,25	2,00	7,97
		4,5	11,27	112,0	24,88	3,15	44,09	17,63	1,98	8,85
		5,0	12,36	120,5	26,79	3,12	47,23	18,89	1,95	9,70
		5,5	13,41	128,4	28,53	3,09	50,06	20,02	1,93	10,53
		6,0	14,43	135,6	30,13	3,06	52,59	21,04	1,91	11,33
		6,5	15,06	134,7	29,93	2,99	52,62	21,05	1,87	11,82
		7,0	15,96	139,4	30,97	2,96	54,27	21,71	1,84	12,53


90	60	4,0	10,95	117,5	26,10	3,28	62,32	20,77	2,39	8,59
	00	4,5	12,17	128,4	28,54	3,25	67,93	22,62	2,36	9,55
		5,0	13,36	138,6	30,80	3,22	73,10	24,37	2,34	10,48
		5,5	14,51	148,0	32,90	3,19	77,84	25,95	2,32	11,39
		6,0	15,63	156,7	34,83	3,17	82,12	27,39	2,29	12,27
		7,0	17,36	163,5	36,33	3,07	85,93	28,64	2,23	13,63
100	40	4,0	10,15	115,7	23,13	3,38	26,60	13,30	1,62	7,97
100		4,5	11,27	126,0	25,21	3,34	28,71	14,36	1,60	8,85
		5,0	12,36	135,6	27,11	3,31	30,59	15,30	1,57	9,70
		5,5	13,41	144,3	28,85	3,28	32,25	16,12	1,55	10,53
		6,0	14,43	152,2	30,43	3,25	33,69	16,85	1,53	11,33
		6,5	15,06	150,1	30,03	3,16	33,54	16,77	1,49	11,82
		7,0	15,96	155,0	31,01	3,12	34,39	17,19	1,47	12,53
100	50	4,0	10,95	134,1	26,82	3,50	44,86	17,94	2,62	8,59
		4,5	12,17	146,6	29,31	3,47	48,74	19,50	2,00	9,55
		5,0	13,36	158,1	31,62	3,44	52,29	20,92	1,98	10,48
		5,5	14,51	168,1	33,76	3,41	55,50	22,20	1.96	11,39
		6,0	15,63	168,8	35,73	3,38	58,40	23,36	1,93	12,27
		6,5	16,36	178,6	35,71	3,30	58,77	23,51	1,90	12,84
		7,0	17,36	185,3	37,06	3,27	60,74	24,29	1,87	13,63
100	60	4,0	11,75	152,5	30,51	3,60	68,59	22,86	2,42	9,22
		4,5	13,07	167,1	33,42	3,58	74,86	24,95	2,39	10,26
		5,0	14,36	180,7	36,44	3,55	80,66	26,89	2,37	11,27
		5,5	15,61	193,4	38,68	3,52	86,01	28,67	2,35	12,25
		6,0	16,83	205,2	41,03	3,49	90,93	30,31	2,32	13,21
		6,5	17,66	207,0	41,39	3,42	92,18	30,73	2,28	13,86
		7,0	18,76	215,6	43,12	3,39	95,77	31,92	2,26	14,72
120	40	4,0	11,75	186,9	31,14	3,99	31,79	15,89	1,64	9,22
		4,5	13,07	204,4	34,07	3,96	34,38	17,19	1,62	10,26
		5,0	14,36	220,8	36,79	3,92	36,72	18,36	1,60	11,27
		5,5	15,61	235,9	39,32	3,89	38,79	19,40	1,58	12,25
		6,0	16,83	249,9	41,65	3,85	40,63	20,31	1,55	13,21
		6,5	17,66	249,6	41,60	3,76	40,84	20,42	1,52	13,86
	_	7,0	18,76	259,2	43,21	3,72	42,01	21,00	1,50	14,72
120	60	4,0	13,35	240,7	40,12	4,25	81,14	27,05	2,47	10,48
		4,5	14,87	264,5	44,08	4,22	88,72	29,57	2,44	11,67
		5,0	16,36	286,9	47,82	4,19	95,79	31,93	2,42	12,84
		5,5	17,81	308,0	51,34	4,16	102,3	34,12	2,40	13,98
		6,0	19,23	327,9	54,65	4,13	108,4	36,14	2,37	15,10
		6,5	20,26	333,3	55,56	4,06	110,8	36,93	2,34	17,94
		7,0	21,56	348,6	58,10	4,02	115,4	38,48	2,31	19,12

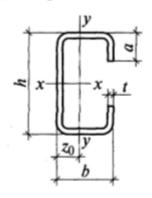
ГОСТ 8509-93. Уголки стальные горячекатаные равнополочные

Но-	b	t	R	r	F,		Справочные значения величин для осей									Mac-
мер угол-					cм ²		X-X		$\mathbf{x}_0 - \mathbf{x}_0$	$\mathbf{x}_0 - \mathbf{x}_0$		$y_0 - y_0$			x ₀	са 1 м, кг
ка		M	M			J_x , cm^4	W_x , cm^3	i_x , c_M	J _{x0} max,	i _{x0} max,	J _{y0} min,	W_{y0} ,	i _{y0} ma	х,		
									cm ⁴	СМ	cm ⁴	cm ³	СМ			
11	110	7	12,0	4,0	15,15	175,61	21,83	3,40	278,54	4,29	72,68	17,36	2,19	106,00	2,96	11,89
11	110	8	12,0	4,0	17,20	198,17	24,77	3,39	314,51	4,28	81,83	19,29	2,18	116,00	3,00	13,50
		8	14,0	4,6	19,69	294,36	32,20	3,87	466,67	4,87	121,98	25,67	2,49	172,00	3,36	15,46
	12,5	9	14,0	4,6	22,00	327,48	36,00	3,86	520,00	4,86	135,88	28,26	2,48	192,00	3,40	17,30
12		10	14,0	4,6	24,33	359,82	39,74	3,85	571,04	4,84	148,59	30,45	2,47	211,00	3,45	19,10
12		12	14,0	4,6	28,89	422,23	47,06	3,82	670,02	4,82	174,43	34,94	2,46	248,00	3,53	22,68
		14	14,0	4,6	33,37	481,76	54,17	3,80	763,90	4,78	199,62	39,10	2,45	282,00	3,61	26,20
		16	14,0	4,6	37,77	538,56	61,09	3,78	852,84	4,75	224,29	43,10	2,44	315,00	3,68	29,65
		9	14,0	4,6	24,72	465,72	45,55	4,34	739,42	5,47	192,03	35,92	2,79	274,00	3,76	19,41
14	140	10	14,0	4,6	27,33	512,29	50,32	4,33	813,62	5,46	210,96	39,05	2,78	301,00	3,82	21,45
		12	14,0	4,6	32,49	602,49	59,66	4,31	956,98	5,43	248,01	44,97	2,76	354,00	3,90	25,50
		10	16,0	5,3	31,43	774,24	66,19	4,96	1229,10	6,25	319,33	52,52	3,19	455,00	4,30	24,67
16	160	11	16,0	5,3	34,42	844,21	72,44	4,95	1340,06	6,24	347,77	56,53	3,18	496,00	4,35	27,02
16	160	12	16,0	5,3	37,39	912,89	78,62	4,94	1450,00	6,23	375,78	60,53	3,17	537,00	4,39	29,35
		14	16,0	5,3	43,57	1046,47	90,77	4,92	1662,13	6,20	430,81	68,15	3,16	615,00	4,47	34,20


		16	16,0	5,3	49,07	1175,19	102,64	4,89	1865,73	6,17	484,64	75,92	3,14	690,00	4,55	38,52
		18	16,0	5,3	54,79	1290,24	114,24	4,87	2061,03	6,13	537,46	82,08	3,13	771,00	4,63	43,01
		20	16,0	5,3	60,40	1418,85	125,60	4,85	2061,03	6,10	589,43	90,02	3,12	830,00	4,70	47,41
18	180	11	16,0	5,3	38,80	1216,44	92,47	5,60	1933,10	7,06	499,78	72,86	3,59	716,00	4,85	33,12
10	100	12	16,0	5,3	42,19	1316,62	100,41	5,59	2092,78	7,04	540,45	78,15	3,58	776,00	4,89	36,97
20	200	12 13 14 16 20 25 30	18,0 18,0 18,0 18,0 18,0 18,0	6,0 6,0 6,0 6,0 6,0 6,0 6,0	47,10 50,85 54,60 61,98 76,54 94,29 111,5 4	1822,78 1960,77 2097,00 2362,57 2871,47 3466,21 4019,60	124,61 134,44 144,17 163,37 200,37 245,59 288,57	6,22 6,21 6,20 6,17 6,12 6,06 6,00	2896,16 3116,18 3333,00 3755,39 4860,42 5494,04 6351,05	7,84 7,83 7,81 7,78 7,72 7,63 7,55	749,40 805,35 861,00 969,74 1181,92 1438,38 1698,16	98,68 105,07 111,50 123,77 146,62 172,68 193,06	3,99 3,98 3,97 3,96 3,93 3,91 3,89	1073,00 1156,00 1236,00 1393,00 1689,00 2028,00 2332,00	5,37 5,42 5,46 5,54 5,70 5,89 6,07	36,97 39,92 42,80 48,65 60,08 74,02 87,56

ГОСТ 8240-97 «Швеллеры стальные горячекатаные»

Но-	h	b	C.	+	R	r				Сг	іравочнь	ые значен	ния для ос	ей		
мер	11	U	S	ι	не бо	лее		Mac-		X-2	X			У-У		
швел лера серии У			М	М			$ \mathbf{F}.cm^2 $ ca 1		J_x , cm^4	W_x , cm^3	i _x , см	S_x , cm^3	J_y , cm^4	W_y , cm^3	i ₀ ,см	х ₀ , см
5У	50	32	4,4	7,0	6,0	2,5	6,16	4,84	22,8	9,1	1,92	5,59	5,61	2,75	0,95	1,16
6,5У	65	36	4,4	7,2	6,0	2,5	7,51	5,90	48,6	15,0	2,54	9,0	8,70	3,68	1,08	1,24
8У	80	40	4,5	7,4	6,5	2,5	8,98	7,05	89,4	22,4	3,16	23,3	12,80	4,75	1,19	1,31
10У	100	46	4,5	7,6	7,0	3,0	10,90	8,59	174,0	34,8	3,99	20,4	20,40	6,46	1,37	1,44
12У	120	52	4,8	7,8	7,5	3,0	13,30	10,40	304,0	50,6	4,78	31,2	31,20	8,52	1,53	1,54
14У	140	58	4,9	8,1	8,0	3,0	15,60	12,30	491,0	70,2	5,60	45,5	45,40	11,0	1,70	1,67
16У	160	64	5,0	8,4	8,5	3,5	18,10	14,20	747,0	93,4	6,42	63,3	63,30	13,8	1,87	1,80
16аУ	160	68	5,0	9,0	8,5	3,5	19,50	15,30	823,0	103,0	6,49	78,8	78,80	16,4	2,01	2,00
18У	180	70	5,1	8,7	9,0	3,5	20,70	16,30	1090,0	121,0	7,24	86,0	86,0	17,0	2,04	1,94
18аУ	180	74	5,1	9,3	9,0	3,5	22,20	17,40	1190,0	132,0	7,32	105,0	105,0	20,0	2,18	2,13
20У	200	76	5,2	9,0	9,5	4,0	23,40	18,40	1520,0	152,0	8,07	113,0	113,0	20,5	2,20	2,07
22У	220	82	5,4	9,5	10,0	4,0	26,70	21,00	2110,0	192,0	8,89	151,0	151,0	25,1	2,37	2,21
24У	240	90	5,6	10,0	10,5	4,0	30,60	24,00	2900,0	242,0	9,73	208,0	208,0	31,6	2,60	2,42
27У	270	95	6,0	10,5,	11,0	4,5	35,20	27,70	4160,0	308,0	10,90	262,0	262,0	37,3	2,73	2,47
30У	300	100	6,5	11,0	12,0	5,0	40,50	31,80	5810,0	387,0	12,00	327,0	327,0	43,6	2,84	2,52
33У	330	105	7,0	11,7	13,0	5,0	46,50	36,50	7980,0	484,0	13,10	410,0	410,0	51,8	2,97	2,59
36У	360	110	7,5	12,6	14,0	6,0	53,40	41,90	10820	601,0	14,20	513,0	513,0	61,7	3,10	2,68
40Y	400	115	8,0	13,5	15,0	6,0	61,50	48,30	15220	761,0	15,70	642,0	642,0	73,4	3,23	2,75


СТО АСЧМ 20-93 «Прокат стальной сортовой фасонного профиля. Двутавры горячекатаные с параллельными гранями полок. Технические условия»

Про-		Размері	ы проф	иля, мм	ſ		Mac-		С	правочные н	величины	для осей		
филь	h	b	S	t	R	F, <i>см</i> ²	са 1 м,кг	J_x , cm^4	W_x , cM^3	S_x , cm^3	i_x , c_M	J_y , cm^4	W_y , cm^4	i _x , см
10 Б1	100	55	4,1	5,7	7	10,32	8,1	171	34,2	19,7	4,07	15,9	5,8	1,24
12 Б1	117,6	64	3,8	5,1	7	11,03	8,7	257	43,8	24,9	4,83	22,4	7	1,43
12 Б2	120	64	4,4	6,3	7	13,21	10,4	318	53	30,4	4,9	27,7	8,7	1,45
14 Б1	137,4	73	3,8	5,6	7	13,39	10,5	435	63,3	35,8	5,7	36,4	10	1,65
14 Б2	140	73	4,7	6,9	7	16,43	12,9	541	77,3	44,2	5,74	44,9	12,3	1,65
16 Б1	157	82	4	5,9	9	16,18	12,7	689	87,8	49,6	6,53	54,4	13,3	1,83
16 Б2	160	82	5	7,4	9	20,09	15,8	869	108,7	61,9	6,58	68,3	16,7	1,84
18 Б1	177	91	4,3	6,5	9	19,58	15,4	1063	120,1	67,7	7,37	81,9	18	2,05
18 Б2	180	91	5,3	8	9	223,95	18,8	1317	146,3	83,2	7,42	100,8	22,2	2,05
20 Б1	200	100	5,5	8	11	27,16	21,3	1844	184,4	104,7	8,24	133,9	26,8	2,22
25 Б1	248	124	5	8	12	32,68	25,7	3537	285,3	159,7	10,4	254,8	41,1	2,79
25 Б2	250	125	6	9	12	37,66	29,6	4052	324,2	182,9	10,37	293,8	47	2,79
30 Б1	298	149	5,5	8	13	40,80	32	6319	424,1	237,5	12,44	441,9	59,3	3,29
30 Б2	300	150	6,5	9	13	46,78	36,7	7210	480,6	271,1	12,41	507,4	67,7	3,29

35 Б1	346	174	6	9	14	52,68	41,4	11095	641,3	358,1	14,51	791,4	91	3,88
35 Б2	350	175	7	11	14	63,14	49,6	13560	774,8	434	14,65	984,2	112,5	3,95
40 Б1	396	199	7	11	16	72,16	56,6	20020	1011,1	564	16,66	1446,9	145,4	4,48
40 Б2	400	200	8	13	16	84,12	66	23706	1185,3	663,2	16,79	1736,2	173,6	4,54
45 Б1	446	199	8	12	18	84,30	66,2	28699	1287	725,1	18,45	1579,7	158,8	4,33
45 Б2	450	200	9	14	18	96,76	76	33453	1486,8	839,6	1859	1871,3	187,1	4,4
50 Б1	492	199	8,8	12	20	92,38	72,5	36845	1497,8	853,5	19,97	1581,5	158,9	4,14
50 Б2	496	199	9	14	20	1011,27	79,5	41872	1688,4	957,3	20,33	1844,4	185,4	4,27
50 Б3	500	200	10	16	20	114,23	89,7	47849	1914	1087,7	20,47	2140,3	214	4,33
55 Б1	543	220	9,5	13,5	24	113,36	89	55682	2050,9	1165,1	22,16	2404,5	218,6	4,61
55 Б2	547	220	10	15,5	24	124,75	97,9	62790	2295,8	1301,6	22,44	2760,3	250,9	4,7
60 Б1	596	199	10	15	22	120,45	94,6	68721	2306,1	1325,5	23,89	1979	198,9	4,05
60 Б2	600	200	11	17	22	134,41	105,5	77638	2587,9	1489,5	24,03	2277,5	227,8	4,12

ГОСТ 8282-83* «Гнутые равнополочные С-образные профили»

h	ь	а	ន	<i>R</i> , не более	Пло- щадь сече- ния, см ²		Справочные величины для осей									
		MM				2	$x-x$ $y-y$ z_0									
						$I_{m{x}_{ m ,cm}}$ 4	W _x ,	i , _{cm}	Т _и ,	<i>W</i> _y , 3 cm 3 cm 3 cm 3 cm	і , см					
62	66	17,5	3	4,5	6,23	40,14	12,95	2,54	35,65	9,61	2,39	2,89	4,89			
65	32	8	1	1,5	1,38	9,38	2,69	2,61	1,89	0,88	1,17	1,05	1,08			
65	32	8	1,6	3	2,11	13,92	4,28	2,57	2,70	1,25	1,13	1,04	1,66			
80	50	24	4	6	7,93	73,05	18,26	3,03	27,72	9,65	1,87	2,13	6,23			
100	50	10	2	3	4,12	65,59	13,12	4,00	12,64	3,68	1,76	1,56	3,22			
100	80	35	5	7,5	14,68	220,49	44,11	3,87	33,57	30,47	3,02	3,62	11,53			
120	55	18	5	7,5	11,66	245,74	40,96	4,59	42,52	11,65	1,91	1,85	9,15			
160	50	20	3	4,5	8,36	306,37	38,30	6,05	27,17	7,74	1,80	1,49	6,56			
160	60	32	4	6	12,57	462,01	37,75	6,05	65,78	7,16	2,29	2,14	9,87			
300	60	50	5	7,5	24,36	2861,55	190,77	10,84	125,61	30,42	2,27	1,87	19,12			
400	160	50	3	4,5	24,01	6073,68	303,68	15,91	884,54	80,83	6,07	5,06	18,85			
400	160	60	4	10	32,27	8028,19	401,41	15,77	1219,71	113,92	6,15	5,29	25,33			
550	65	30	4	6	28,55	10258,72	373,04	18,96	110,32	20,64	1,97	1,16	22,41			
410	65	30	4	6	22,95	4872,87	237,70	14,57	103,88	20,33	2,13	1,39	18,01			

М.А. Салахутдинов, И.Л. Кузнецов

ПРОЕКТИРОВАНИЕ УСИЛЕНИЯ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

Учебно-методическое пособие

Редактор Л.З. Ханафиева

Издательство

Казанского государственного архитектурно-строительного университета Подписано в печать 23.12.19 Формат 60x84/16 Заказ № 258 Печать ризографическая Усл.-печ. л. 6,25 Тираж 30 экз. Бумага офсетная № 1 Уч.-изд. л. 6,25

Отпечатано в полиграфическом секторе Издательства КГАСУ. 420043, г. Казань, ул. Зеленая, д. 1.