ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ ГОСУДЕРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГАСУ»)

Кафедра строительных материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению курсового проекта по дисциплине «Основы мониторинга и обследования зданий и сооружений»

Для магистров направления 08.04.01 Строительство Направленность (профиль) «Долговечность и эксплуатационная надежность строительных конструкций зданий и сооружений»

Составитель: Д.С. Смирнов, И.Ю. Майстренко, Г.Р. Хайруллин

УДК 691:620

Методические указания по выполнению курсового проекта по дисциплине «Основы мониторинга и обследования зданий и сооружений» КГАСУ; Сост.: Д.С. Смирнов, И.Ю. Майстренко, Г.Р. Хайруллин Казань, 2017. — 12 с.

Настоящие методические указания содержат материалы, необходимые для выполнения студентами курсового проекта по дисциплине «Основы мониторинга и обследования зданий и сооружений».

Составлены в соответствии с Государственным образовательным стандартом по направлению 08.04.01 Строительство.

© Казанский государственный архитектурно-строительный университет, 2017 г.

Содержание

Введение	4
Порядок выполнения курсового проекта	4
Часть 1. Расчет несущей способности железобетонных	
конструкций	5
Часть 2. Решение задач по обработке результатов	
многократных равноточных измерений	15
Часть 3 Оценка надежности строительных	
конструкций по их повреждениям	25

Введение

Курсовая работа магистров по дисциплине «Основы мониторинга и обследования зданий и сооружений» по направлению 08.04.01 Строительство. Направленность (профиль) подготовки «Долговечность и эксплуатационная надежность строительных конструкций зданий и сооружений» выполняется на 1 курсе во втором семестре.

Целью выполнения курсового проекта является освоение у обучающихся компетенций в области мониторинга и оценки технического состояния зданий, сооружений; знаний в области мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчетного обоснования, в том числе с использованием программно-вычислительных комплексов; знаний методов оценки надежности конструкций и несущих систем зданий и сооружений; умений проводить расчеты остаточного ресурса строительных объектов, предварительное технико-экономическое обоснование затрат на ремонт зданий и сооружений; владений способностью проводить и обрабатывать результаты испытаний, проводить расчеты несущей способности конструкций и элементов здания с учетом их остаточного ресурса.

Порядок выполнения курсового проекта

Курсовой проект состоит из трех частей.

Первой частью курсового проекта является расчет остаточной несущей способности железобетонных конструкций (плит перекрытия, ригеля и колонны). В соответствии с номером зачетной книжки определяется вариант задания, по которому выбираются конструктивные особенности конструкции, срок ее эксплуатации, остаточная прочность бетона и потеря площади армирования.

Вторая часть проекта включает решение задачи по обработке результатов многократных равноточечных измерений на примере толщины стенки стальной балки. В соответствии с номером зачетной книжки определяется вариант задания, по которому выбираются 20 результатов измерений.

Третья часть проекта заключается в оценке надежности здания по повреждениям его конструкций. Определяется срок эксплуатации здания до капитального ремонта в годах, а также срок его эксплуатации до аварийного состояния. Задание, включающее тип здания, элементы конструкций и степень их поврежденности выдается преподавателем обучающемуся индивидуально. На данном этапе курсового проектирования выполняется чертеж здания (план, продольные и поперечные разрезы) с указанием наиболее поврежденных элементов. На отдельном листе наиболее поврежденные элементы вычерчиваются с указанием на них дефектов.

Часть 1. Расчет несущей способности железобетонных конструкций

Расчёт прочности по нормальному сечению. Определение расчетной нагрузки.

1 приближение.

Необходимо определить максимальную нагрузку, которую способна нести плита. Для этого определим момент, по формуле 3.17 [1]. Т.к. в конструкции отсутствует сжатая ненапрягаемая арматура, формула имеет вид:

$$M_u = R_b * b_f * X * (h_0 - 0.5*X)$$

где: R_b – расчетные значения сопротивления бетона осевому сжатию;

 $b_{\rm f}$ ' – ширина верхней полки;

Х – высота сжатой зоны;

 h_0 – полезная высота сечения

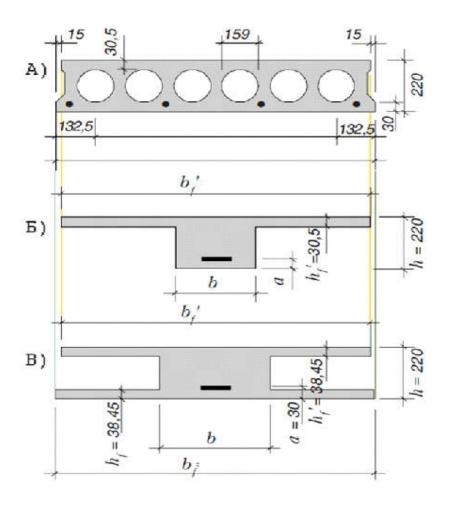


Рис. 1.1 Сечение плиты: А) проектное; Б) расчётное по 1-ой группе предельных состояний; В) по 2-ой группе предельных состояний.

Определим высоту сжатой зоны:

$$X = \frac{\gamma_{s,3} * R_s * A_s}{R_b * b_f'}$$

где: $\gamma_{s,2}$ — коэффициент условий работы, допускается принимать равным 1,1;

 R_s – Прочность арматуры на растяжение;

 A_s – площадь рабочей арматуры, подбирается по сортаменту;

R_b – расчетные значения сопротивления бетона осевому сжатию;

 $b_{\rm f}$ ' — ширина верхней полки.

Так как высота сжатой зоны может быть определена не корректно, необходимо провести расчёт по второму приближению.

2 приближение.

Проведем расчет с полученным значением момента.

Определяем высоту сжатой зоны.

$$X = h_0 - \sqrt{h_0^2 - \frac{2M}{R_b * b_f'}}$$

тогда: $M_u = R_b * b_f * X * (h_0 - 0.5*X)$

Так же выделим расчётную нагрузку по второму приближению:

$$P = \frac{8 * M_u}{I^2}$$

По 8.3.5[2] значение условного класса бетон определяется по формуле B=0,8*R для тяжелого бетона и B=0,7*R для легкого, где R — кубиковая прочность.

По п. 8.4.4 [2], расчётные сопротивления находятся путем деления нормативных значений на коэффициент надежности по материалу, равный:

- для конструкций, изготовленных до 1932 г., и для сталей, у которых полученные при испытаниях значения предела текучести ниже 215 МПа, 1,2;
- для конструкций, изготовленных в 1932-1982 гг., и для сталей с пределом текучести ниже 380 МПа 1,1;
- для сталей с пределом текучести выше 380 МПа 1,15.

Для элементов конструкций, имеющих коррозионный износ с потерей более 25% площади поперечного сечения или остаточную после коррозии толщину 5 мм и менее, расчетные сопротивления должны умножаться на коэффициент, принимаемый равным 0,95 для слабоагрессивных, 0,9 - для среднеагрессивных и 0,85 - для сильноагрессивных сред.

Пример расчёта:

Расчёт прочности по нормальному сечению. Определение расчетной нагрузки.

Срок эксплуатации здания 40 лет.

Берем к расчету плиту размерами 990x220x6280 мм. В плите предусмотрено 5 круглых пустот диаметром d = 159 мм.

Показатели кубиковой прочности равны 18,2 МПа. По 8.3.5[2] значение условного класса бетон определяется по формуле B=0,8*R для тяжелого бетона и B=0,7*R для легкого, где R — кубиковая прочность. 18,2*0,8=14,56, что соответствует классу бетона B25 : R_{bn} = 18,5 МПа, R_{btn} = 1,55 МПа, R_b = 14,5 МПа, R_{bt} = 1,05 МПа при γ_{b2} = 0,9 (так как панель подвержена действию длительных нагрузок), E_b = 32,5 × 10³ МПа.

Продольная преднапрягаемая арматура класса A1000 в количестве 4 стержней с характеристиками. По п. 8.4.4 [2], расчётные сопротивления находятся путем деления нормативных значений на коэффициент надежности по материалу, равный 1,1. $R_{sn}=1000$ МПа, $R_s=909$ МПа, $E_s=20\times 10^4$ МПа. За период эксплуатации номинальный диаметр стержней уменьшился с 16 до 14 мм. Потери площади поперечного сечения 12,5%. При коррозионном износе с потерей более 25% площади поперечного сечения вводится дополнительный понижающий коэффициент.

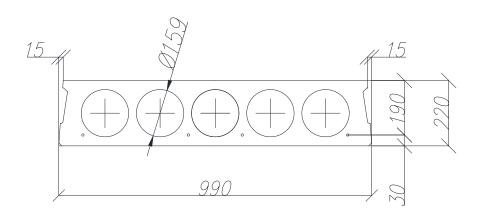


Рис. 1.2 Проектное сечение плиты

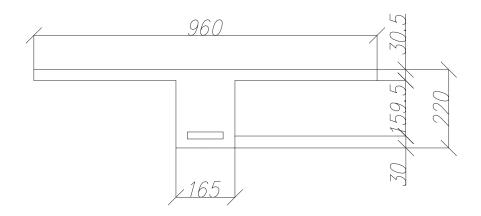


Рис. 1.3 Расчетное сечение по 1-ой группе предельных состояний

Определим максимальную нагрузку, которую способна нести плита:

$$M_u \!\!=\!\! R_b * b_{f'} * X * (h_0 - 0.5*X) \!\!=\!\! 14.5*960*44.25*(190 \!\!-\! 0.5*44.25) = \!\! 103.4 \ M\Pi a.$$

где: R_b – расчетное значение сопротивления бетона осевому сжатию;

 $b_{\rm f}$ ' – ширина верхней полки;

Х – высота сжатой зоны;

 h_0 – полезная высота сечения, равная 190.

$$X = \frac{\gamma_{s,3} * R_s * A_s}{R_b * b_s'} = \frac{1.1 * 909 * 616}{14.5 * 960} = 44.25 \text{ mm}.$$

где: $\gamma_{s,3}$ – коэффициент условий работы, допускается принимать равным 1,1;

 $R_{\rm g}$ – Прочность арматуры на растяжение;

 $\mathbf{A}_{\mathbf{S}}$ – площадь рабочей арматуры, подбирается по сортаменту;

R_b – расчетные значения сопротивления бетона осевому сжатию;

b_f' – ширина верхней полки.

Так как в первом приближении высота сжатой зоны может быть определена не корректно, выполняется расчет по второму приближению.

Определим фактическую высоту сжатой зоны. Для этого подставим полученное значение момента в формулу:

$$X = h_o - \sqrt{h_o^2 - \frac{2M}{R_b * b_f'}} = \ 190 - \sqrt{190^2 - \frac{103 \text{,} 4 * 2}{14 \text{,} 5 * 960}} = 44.25 \, \text{mm}.$$

Следовательно, высота сжатой зоны была определена верно. Тогда расчетная нагрузка будет равна:

$$P = \frac{8 * M_u}{l^2} = \frac{8 * 103,4}{6280^2} = 20,97 \text{ kg/m}^2$$

где: l – проектная длинна плиты перекрытия.

Таблица 1.1.

Последний номер зачетной книжки	Размеры плиты	Показатели кубиковой прочности	Класс арматуры	Количество стержней
0	6280x3140x220	28,2	A800	6
1	5080x2540x220	21,6	K1400	5
2	4780x2390x220	17,3	A600	4
3	6280x1490x220	22,8	K1500	6
4	5980x1490x220	15,3	A540	5
5	5380x1490x220	19,5	Bp1200	4
6	5680x1190x220	15,1	A400	5
7	5980x1190x220	15,8	A300	4
8	4780x1190x220	25,8	A500	3
9	5380x990x220	27,2	Bp1300	4

Таблица 1.2.

Предпоследний		Потери	
номер зачетной	Срок	площади	Диаметр
книжки	эксплуатации	армирования	стержней
		%	MM
0	36	11	18
1	37	12	16
2	38	12,5	14
3	39	13	20
4	40	14	22
5	41	15	16
6	42	17	14
7	43	18	18
8	44	20	20
9	45	25	22

Расчёт ригеля

Расчёт по нормальным сечениям.

Необходимо определить максимальную нагрузку, которую способен нести ригель. Для этого определим изгибающий момент, который может быть воспринят сечением элемента:

$$M_{ult} = R_b * b * X * (h_0 - 0.5*X) + R_{sc} * A'_s * (h_0-a')$$

где: R_b – расчетное значение сопротивления бетона осевому сжатию;

Х – высота сжатой зоны;

 h_0 – полезная высота сечения ригеля.

R_c – расчётное значение сопротивления арматуры сжатию;

 A'_{s} – площадь рабочей арматуры в сжатой зоне.

где: Х – высота сжатой зоны

$$X = \frac{R_s * A_s - R_{sc} * A'_s}{R_b * b}$$

 R_s – расчётное сопротивление стали растяжению;

 A_s – площадь рабочей арматуры 4826-12,5%=3695мм²;

 R_{b} – расчётное сопротивление бетона осевому сжатию;

 R_{c} – расчётное значение сопротивления арматуры сжатию;

A'_s – площадь рабочей арматуры в сжатой зоне.

Далее из формулы определение максимального момента выделим нагрузку:

$$P = \frac{8 * M_u}{l^2}$$

Расчет по прочности при действии поперечных сил.

Расчет изгибаемых элементов по наклонному сечению производят из условия 6.66 [2]:

$$Q=Q_b+Q_{sw},$$

где: Q_b — поперечная сила, воспринимаемая бетоном в наклонном сечении, определяемая по формуле:

$$Q_b = \frac{\varphi_{b2} * R_{bt} * b * h_0^2}{c}$$

где: ϕ_{b2} — коэффициент, принимаемый равным 1,5 (п. 6.2.34 [3]).

 $Q_{\rm sw}$ — поперечная сила, воспринимаемая поперечной арматурой в наклонном сечении, определяемая по формуле:

$$Q_{sw} = \varphi_{sw} * q_{sw} * c$$

где: ϕ_{sw} — коэффициент, принимаемый равным 0,75 (п. 6.2.34 [3]); q_{sw} — усилие в поперечной арматуре на единицу длины элемента:

$$q_{sw} = \frac{R_{sw}*A_{sw}}{s_w}$$

Поперечная арматура должна отвечать конструктивным требованиям, приведенным в п. 8.3.9-8.3.17.

Пример расчета

Требуется рассчитать ригель длиной 6160 мм. Сечение ригеля 250 \times 650 мм.

Показатели кубиковой прочности равны 22,3 МПа. По 8.3.5[3] значение условного класса бетон определяется по формуле B=0,8*R для тяжелого бетона и B=0,7*R для легкого, где R — кубиковая прочность. 22,3*0,7=15,61, что соответствует классу бетона B20 : $R_{bn}=22$ МПа, $R_{btn}=1,35$ МПа, $R_b=11,5$ МПа, $R_{bt}=1,55$ МПа, $E_b=27,5\times10^3$ МПа.

Продольная ненапрягаемая арматура A240, 6 стержней Ø32. Имеет место коррозионный износ с потерей 12,5% площади поперечного сечения. По п. 8.4.4 [2], расчётные сопротивления находятся путем деления нормативных значений на коэффициент надежности по материалу, равный 1,1. $R_{sn} = 400 \text{ M}\Pi a$, $R_s = 363,6 \text{ M}\Pi a$, $E_s = 20 \times 10^4 \text{ M}\Pi a$.

Шаг поперечных стержней $s_w = 90$ мм. Диаметр хомутов $d_{sw} = 12$ мм. $A_{sw} = 113,1$ мм 2 .

Так как арматура в сжатой зоне отсутствует, формула нахождения сжатой зоны будет иметь вид:

$$X = \frac{R_s * A_s}{R_b * b} = \frac{363.6 * 3695}{1.15 * 250} = 467 \text{ MM}.$$

где: R_s – расчётное сопротивление стали растяжению;

 A_{E} – площадь рабочей арматуры 4826-12,5% = 3695мм²;

 $R_{\tt b}$ – расчётное сопротивление бетона осевому сжатию.

Определим момент в середине пролета

 $M_{ult} = R_b * b * X * (h_0 - 0.5*X) = 1.15*250*467*(650-0.5*467) = 55.92$ Мпа где: R_b – расчетное значение сопротивления бетона осевому сжатию;

Х – высота сжатой зоны;

 h_0 – полезная высота сечения ригеля.

Расчётная нагрузка будет равна

$$P = \frac{8 * M_u}{l^2} = \frac{8 * 55,92}{6030^2} = 12,3 \text{ KF/M}^2$$

Расчет по прочности при действии поперечных сил.

Расчет изгибаемых элементов по наклонному сечению производят из условия 6.66 [2]:

$$Q=Q_b+Q_{sw},$$

Поперечная сила, воспринимаемая бетоном в наклонном сечении, определяемая по формуле:

$$Q_b = \frac{\varphi_{b2} * R_{bt} * b * h_0^2}{c} = \frac{1,5 * 1,55 * 650^2}{1200} = 204,6 \, \text{KПа}$$

где: ϕ_{b2} — коэффициент, принимаемый равным 1,5 (п. 6.2.34 [3]); с — длина проекции наклонного сечения. Принимается от h_0 до $2*h_0$; R_{bt} — сопротивление бетона осевому растяжению.

$$Q_{sw} = \varphi_{sw} * q_{sw} * c = 0.75 * 456.92 * 1200 = 411.2 \text{ K}\Pi a$$

где: ϕ_{sw} — коэффициент, принимаемый равным 0,75 (п. 6.2.34 [3]); q_{sw} — усилие в поперечной арматуре на единицу длины элемента; c — длина проекции наклонного сечения. Принимается от h_0 до $2*h_0$;

$$q_{sw} = \frac{R_{sw} * A_{sw}}{s_w} = \frac{363,6 * 113,1}{90} = 456,92$$

где: R_{sw} — сопротивление поперечной арматуры;

 A_{sw} – площадь поперечной арматуры;

 S_w – шаг поперечной арматуры;

Поперечная арматура должна отвечать конструктивным требованиям, приведенным в п. 8.3.9-8.3.17.

Поперечная нагрузка будет равна:

$$Q = Q_b + Q_{sw} = 204,6+411,2 = 615,8 \text{ K}$$
Па.

Таблица 1.3.

Последний номер зачетной книжки	Размеры ригеля	Показатели кубиковой прочности	Растянутая арматура (класс арматуры, количество, диаметр)	Сжатая арматура (класс арматуры, количество, диаметр)
0	350x250	15,1	A400, 5 Ø28	A400, 2 Ø22
1	500x300	21,6	A500,5 Ø28	A500,3 Ø28
2	300x200	17,3	A540, 3 Ø32	Отсутствует
3	350x250	25,8	A600, 6 Ø25	A600, 2 Ø16
4	600x400	15,3	A800,4 Ø32	A800,2 Ø25
5	450x250	19,5	A240 ,4 Ø28	A240, 2 Ø 20
6	500x300	28,2	Bp1200	A400, 3 Ø22
7	550x350	15,8	Bp1300	Отсутствует
8	400x250	22,8	K1400, 6 Ø15	12

9	650x450	26,3	K1500, 7 Ø12	
---	---------	------	--------------	--

Таблица 1.4

Предпоследний номер зачетной книжки	Срок эксплуатации	Потери площади армирования %	Диаметр хомутов мм
0	38	11	8
1	39	12	10
2	40	12,5	12
3	41	13	8
4	42	15	10
5	43	17	12
6	44	19	8
7	45	20	10
8	46	22	12
9	47	25	8

Расчёт колонны

Основным случаем потери несущей способности железобетонных колонн является потеря общей устойчивости. Поэтому в теле колонны устанавливают продольную рабочую и поперечную арматуру. Продольная арматура устанавливается по всей длине колонны и воспринимает основные нагрузки. Однако без установки дополнительной арматуры — поперечной, произойдет потеря устойчивости продольной арматуры, которая начнет выпучиваться и разрушит защитный слой бетона, что приведет к разрушению элемента в целом. Поперечные стержни в этом случае играют «удерживающую» роль и не позволяют продольной арматуре выпучиваться сверх нормативных значений.

Расчет прочности нормального сечения

При отношении H0 / h> 4 и H0 / h< 20 расчет допускается производить из условия:

$$N \le \phi * (Rb*Ab+Rs*As).$$

где: ϕ - коэффициент, принимаемый при длительном действии нагрузки по таблице 6.2 в зависимости от гибкости элемента. При высоте этажа 3 м и сечением колонны 0,3м ϕ =0,9;

 R_b – расчетные значения сопротивления бетона осевому сжатию; A_b – площадь сечения колонны;

 R_s- расчетное значение сопротивления стали осевому растяжению;

A_s – площадь сечения арматуры.

Длину колонны определяем с учетом заделки ее ниже отметки пола на 0,8 м и расположении стыка на 0,4 м выше перекрытия

Пример расчета:

Требуется рассчитать колонну сечением 300х300 мм. Сечение колонны армируется симметрично. Количество стержней продольной арматуры равно четырем, размещены в углах поперечного сечения колонны высота этажа 3 м. Срок эксплуатации 40 лет.

Показатели кубиковой прочности равны 22,3 МПа. По 8.3.5[3] значение условного класса бетон определяется по формуле B=0,8*R для тяжелого бетона и B=0,7*R для легкого, где R — кубиковая прочность. 22,3*0,7=15,61, что соответствует классу бетона $B20: R_b = 11,5$ МПа.

Продольная ненапрягаемая арматура класса A240 в количестве 4 **Ø16**. Имеет место коррозионный износ с потерей 12,5% площади поперечного сечения. По п. 8.4.4 [2], расчётные сопротивления находятся путем деления нормативных значений на коэффициент надежности по материалу, равный 1,1. $R_{sn} = 400 \text{ M}\Pi a$, $R_s = 363,6 \text{ M}\Pi a$, $E_s = 20 \times 10^4 \text{ M}\Pi a$.

Максимальная нагрузка на колонну определяется из неравенства:

$$N \le \varphi * (R_b * A_b + R_s * A_s) = 0.9 * (11.5 * 0.09 + 363.3 * 0.804 * 10^{-3}) = 1.194 \text{ M}\Pi a$$

где: ф - коэффициент, принимаемый при длительном действии нагрузки по таблице 6.2 [2] в зависимости от гибкости элемента.

При $H_0 = 3+0.8+0.4=4.2$ м и сечением колонны 0.3м $\phi=0.87$;

R_b – расчетные значения сопротивления бетона осевому сжатию;

A_b – площадь сечения колонны;

 R_s – расчетное значение сопротивления стали осевому растяжению;

 A_s – площадь сечения арматуры.

Таблица 1.5.

Последний номер зачетной книжки	Сечение колонны	Показатели кубиковой прочности	Класс арматуры	Диаметр
0	250x250	15,1	A240	22
1	250x300	21,6	A300	20
2	300x300	17,3	A400	18
3	300x350	25,8	A500	16
4	350x400	15,3	A540	14
5	400x300	19,5	A240	22
6	400x250	28,2	A300	20
7	250x350	15,8	A400	18
8	450x400	22,8	A500	16
9	450x350	26,3	A540	14

Таблица 1.6.

Предпоследний номер зачетной книжки	Срок эксплуатации	Потери площади армирования, %	Высота этажа, м
0	37	11	2,6
1	39	12	2,8
2	42	12,5	3,0
3	41	13	3,2
4	38	15	3,4
5	43	17	3,6
6	40	19	2,6
7	45	20	2,8
8	48	22	3,0
9	47	25	3,2

Часть 2. Решение задач по обработке результатов многократных равноточных измерений

Для проведения измерений с целью контроля, диагностирования или испытания технических систем необходимо осуществлять мероприятия, определяющие так называемое проектирование измерений: анализ измерительной задачи с выяснением возможных источников погрешностей; выбор показателей точности измерений; выбор числа измерений, метода и средства измерения; формулирование исходных данных для расчета погрешности; расчет отдельных составляющих и общей погрешности; расчет показателей точности и сопоставление их с выбранными показателями.

При исследовательских (лабораторных) методах измерения [5] рассматриваются вопросы оценки законов распределения измеряемых величин и погрешностей, оценки их достоверности по критериям согласия, выявления аппроксимирующих функций и точности этих аппроксимаций.

2. Последовательность обработки результатов измерений

Последовательность обработки результатов измерений рассмотрим на примере: требуется оценить результаты многократных равноточных измерений (см. выборочные данные в табл. 2.1) толщины стенки главной

балки t_w (образец: полоса из стального проката), выполненного штангенциркулем по ГОСТ 166-89* с величиной отсчета по нониусу 0,1 мм. Точность толщины проката определяется симметричным полем допуска \pm 0,65 мм.

Таблица 2.1

				Резуль	таты из	мерени	й, мм			
$t_{w,i}$	12.2	12.3	12.0	11.7	13.5	12.9	12.7	15.2	11.0	12.4
_	11.1	11.5	12.1	12.2	10.5	12.4	12.4	12.2	12.3	12.0

Решение:

Исправление результатов наблюдений исключением (если это возможно) систематической погрешности.

Поскольку постоянные не исключенные составляющие систематической погрешности, возникающие из-за погрешности средства измерения (СИ), не могут быть определены, то в качестве интервальной оценки принимаем предел допустимой погрешности средства измерения.

Определяем предельную погрешность измерения Δ_{met} по условию:

$$\Delta_{met} \le K \cdot \Delta x = 0.2 \cdot (2 \cdot 0.65) = 0.260 \text{ MM},$$
 (2.1)

здесь: K – коэффициент, зависящий от цели измерений и характера объекта, принимается, согласно п. 5.3, ГОСТ 26433.0-85 (2003) [6], равным 0,2 при измерениях, выполняемых в процессе и при контроле точности изготовления и установки элементов, а также при контроле точности разбивочных работ; при измерениях, выполняемых в процессе производства разбивочных работ — K = 0,4; Δx – допуск измеряемого геометрического параметра, установленный нормативно-технической документацией на объект измерения.

Вычисляем среднее арифметическое значение $t_{\mathbf{w}}$ по формуле:

$$t_w = \frac{1}{n} \cdot \sum_{i=1}^{n} t_{w,i} = 12,230 \text{MM}, \tag{2.2}$$

где: n = 20 — число измерений.

Выполняем оценку рассеяния отдельных результатов $t_{w,i}$ измерения относительно среднего t_w , определяем опытное среднее квадратическое отклонение $\sigma_{t,w}$ по формуле:

$$\sigma_{t_w} = \sqrt{\frac{\sum_{i=1}^{n} (t_{w,i} - t_w)^2}{m \cdot (n-1)}}$$
 (2.3)

где: m — число многократных измерений в одном характерном сечении или месте, в случаях, когда требуется повышенная точность измерений; эти

места указываются в нормативно-технической, проектной или технологической документации на объект измерения — п. 6.4 ГОСТ 26433.0-85 (2003) [6] — в нашем случае m = 1.

Исключаем промахи. Для оценки промахов (учитывая число измерений n = 20, т.е. $n \ge 20$, ..., 50) будем использовать критерий 3σ . В этом случае считается, что результат, возникающий с вероятностью $P \le 0{,}003$, мало реален и его можно квалифицировать промахом, то есть сомнительный результат $t_{w,i}$ отбрасывается, если:

$$|t_w - t_w| > [3 \cdot \sigma_{t_w} = 2.914].$$
 (2.4)

Результаты вычислений значений для левой части неравенства сведены в табл.2.2, а выборочные данные, удовлетворяющие критерию 3σ - в табл. 2.3.

Таблица 2.2

Результаты вычислений значений $ t_w - t_{w,i} $, мм													
0,030	0,070	0,230	0,530	1,270	0,670	0,470	2,970	1,230	0,170				
1,130	0,730	0,130	0,030	1,730	0,170	0,170	0,030	0,070	0,230				

Таблица 2.3

		Результаты вычислений значений, мм										
$t_{w,j}$	12,2	12,3	12,0	11,7	13,5	12,9	12,7		11,0	12,4		
	11,1	11,5	12,1	12,2	10,5	12,4	12,4	12,2	12,3	12,0		

Для скорректированной выработки (табл. 2.3) находим среднее арифметическое значение $t_{w,k}$ и среднее квадратическое отклонение $\sigma_{t_{w,k}}$ (примечание: исключено значение измерений 15,2 мм, как промах):

$$t_{w,k} = \frac{1}{k} \cdot \sum_{j=1}^{k} t_{w,j} = 12,074 \text{ MM},$$
 (2.5)

$$\sigma_{t_{w,k}} = \sqrt{\frac{\sum_{j=1}^{k} (t_{w,j} - t_{w,k})^2}{m \cdot (k-1)}} = 0.693 \text{ mm}.$$
 (2.6)

Оценка точности измерений (ошибка самого среднего квадратического отклонения) характеризуется условием:

$$\sigma_{\sigma} = \frac{\sigma_{t_{w,k}}}{\sqrt{2k}} = \frac{0,693}{\sqrt{2 \cdot 19}} = 0,112 < 0,25 \cdot \sigma_{t_{w,k}} = 0,173, \tag{2.7}$$

где: k = 19 — объем скорректированной выборки.

В случае если объем выборки n < 20, целесообразно применять *критерий Романовского*. При этом вычисляют отношение:

$$\beta = \left| \frac{t_w - t_{w,i}}{\sigma_{t_w}} \right|, \tag{2.8}$$

и полученное значение β сравнивают с теоретическим β_t — при выбираемом уровне значимости P по табл. 2.4. Обычно выбирают P=0,01...0,05, и если $\beta \geq \beta_t$, то результат отбрасывают.

Критерий $\beta_t = f(n)$

Таблица 2.4

Вероятность		Число измерений, <i>n</i>								
P	4	4 6 8 10 12 15								
0,01	1,73	2,16	2,43	2,62	2,75	2,90	3,08			
0,02	1,72	2,13	2,37	2,54	2,66	2,80	2,96			
0,05	1,71	2,10	2,27	2,41	2,52	2,64	2,78			
0,10	1,69	2,00	2,17	2,29	2,39	2,49	2,62			

Если число измерений невелико (до 10), то можно использовать *критерий Шовине*. В этом случае промахом считается результат $t_{w,i}$, если разность $|t_w - t_{w,i}|$ превышает значения σ_{t_w} , приведенные ниже в зависимости от числа измерений:

$$\left|t_{w}-t_{w,i}\right| > egin{cases} 1,6 \cdot \sigma_{t_{w}} & \text{при } n=3 \ 1,7 \cdot \sigma_{t_{w}} & \text{при } n=6 \ 1,9 \cdot \sigma_{t_{w}} & \text{при } n=8 \ 2,0 \cdot \sigma_{t_{w}} & \text{при } n=10 \end{cases}$$
 (2.9)

Определяем закон распределения случайной величины.

Часто для предварительной оценки закона распределения параметра используют относительную величину среднего квадратического отклонения – коэффициент вариации:

$$\vartheta_{t_{W,k}} = \frac{\sigma_{t_{W,k}}}{t_{W,k}} = \frac{0,693}{12.074} = 0,057 \tag{2.10}$$

Например, при, $\vartheta_{t_{W,k}} \leq 0.33 \dots 0.35$ можно считать, что распределение случайной величины подчиняется нормальному закону.

Учитывая, что при оценке геометрических параметров в строительстве часто используют нормальный закон распределения случайной величины, для нашего примера значение коэффициента вариации не является достаточно информативным. В таком случае следует выполнить оценку закона распределения обстоятельно.

Отображаем выборочные данные в виде вариационного ряда (см. табл. 2.5).

Таблица 2.5

k_{i}	$t_{w,k}$, MM	k_i	$t_{w,k}$, MM	k_i	$t_{w,k}$, MM	k_i	$t_{w,k}$, MM
1	10,5	6	12,0	11	12,2	16	12,4
2	11,0	7	12,0	12	12,3	17	12,7
3	11,1	8	12,1	13	12,3	18	12,9
4	11,5	9	12,2	14	12,4	19	13,5
5	11,7	10	12,3	15	12,4		

Вариационный ряд разбиваем на некоторое число интервалов (число интервалов в большинстве случаев принимают в пределах 8...12, однако их может быть и больше). Ориентировочную величину интервала $t_{w,k}$, можно определить по формуле:

$$l_{t_{W,k}} = \frac{t_{W,k,max} - t_{W,k,min}}{1 + 3.2 \cdot lgk} = \frac{13.5 - 10.5}{1 + 3.2 \cdot lg19} = 0.589 \to 0.6 \,\text{MM}, \tag{2.11}$$

где: $t_{w,k,max}$ и $t_{w,k,min}$ — соответственно максимальное и минимальное значение скорректированной выборки; k — объем скорректированной выборки. Таким образом, достаточно разбить рассматриваемую выборку на пять интервалов:

Подсчитываем число значений выборки i m, попадающих в каждый iтый интервал, и определяем частоты, соответствующие каждому интервалу:

$$\omega_i = \frac{m}{k} \tag{2.12}$$

Если при группировке значений выборки по интервалам имеются значения, находящиеся точно на границе двух интервалов, то их считают принадлежащим обоим интервалам и прибавляют к числу значений m_i смежных интервалов по 1/2.

Результаты группировки значений выборки по интервалам и определения частот, соответствующих каждому интервалу, сведены в табл. 2.6.

Таблица 2.6

Интервал, мм	$l_{t_{w,k},\mathrm{mm}}$	m_i	k	$\omega_i = \frac{m}{k}$	$f(t_{w,k}) = \frac{\omega_i}{l_{t_{w,k}}}$
10,511,1	0,6	2,5	19	0,132	0,220
11,111,7	0,6	2	19	0,105	0,175
11,712,3	0,6	7,5	19	0,395	0,658
12,312,9	0,6	5,5	19	0,290	0,483
12,913,5	0,6	1,5	19	0,079	0,132

Полученный статистический ряд оформляем графически в виде гистограммы (рис. 2.1). Для этого по оси абсцисс откладывают интервалы и на каждом из них, как на основании, строят прямоугольник, площадь которого равна частоте данного интервала (ω_i). Высоту прямоугольника получают, разделив его площадь на длину интервала ($l_{t_{w,k}}$). Полученная высота представляет собой статистическую плотность распределения:

$$f(t_{w,k}) = \frac{\omega_t}{l_{t_{w,k}}} \tag{2.13}$$

Сравнивая внешний вид гистограммы с формой теоретических кривых плотности распределения, можно высказать гипотезу о соответствии статистического распределения тому или иному теоретическому.

Построим несколько теоретических кривых плотности распределения (см. рис. 2.1): по нормальному закону $f_N(t_{w,k})$, по закону Вейбулла $f_V(t_{w,k})$, по закону Гумбеля $f_G(t_{w,k})$. Формулы для вычисления плотности распределения этих законов имеют вид:

$$f_N\left(t_{w,k}\right) = \frac{1}{\sigma_{t_{w,k}} \cdot \sqrt{2\pi}} \cdot exp\left[-\frac{1}{2 \cdot \sigma^2} \cdot (t_{w,k} - t_{w,k})^2\right] \tag{2.14}$$

$$f_{v}\left(t_{w,k}\right) = \frac{b}{a} \cdot \left(\frac{t_{w,k}}{a}\right)^{-b+1} \cdot exp\left[-\left(\frac{t_{w,k}}{a}\right)^{-b}\right] \tag{2.15}$$

$$f_{\mathrm{G}}\left(t_{\mathrm{W},k}\right) = \frac{1}{\beta} \cdot \exp\left[\frac{a - t_{\mathrm{W},k}}{\beta} - \exp\left(\frac{a - t_{\mathrm{W},k}}{\beta}\right)\right], -\infty < t_{\mathrm{W},k} < \infty, -\infty < \alpha < \infty, \beta > 0, (2.16)$$

где: b и а — соответственно параметр формы и параметр масштаба для функции плотности распределения по закону Вейбулла [8]; α и β — параметры для функции плотности распределения по закону Гумбеля.

Параметры α и β связаны с математическим ожиданием $t_{w,k}$, и дисперсией $\sigma_{t_{w,k}}^2$ следующим образом:

$$\begin{cases} t_{w,k} = \alpha + 0.5776 \cdot \beta \\ \sigma_{t_{w,k}}^2 = 1.645 \cdot \beta^2 \end{cases}$$
 (2.17)

Применительно к нашему примеру, по формулам (2.14)...(2.17) получены следующие теоретические функции плотности распределения случайной величины $t_{w,k}$:

$$f_N\left(t_{w,k}\right) = \frac{1}{0.693 \cdot \sqrt{2\pi}} \cdot exp\left[-\frac{1}{2 \cdot 0.693^2} \cdot (t_{w,k} - 12,074)^2\right]$$
(2.18)

$$f_{V}(t_{w,k}) = \frac{15,361}{12,074} \cdot \left(\frac{t_{w,k}}{12,074}\right)^{-15,361+1} \cdot exp\left[-\left(\frac{t_{w,k}}{12,074}\right)^{-15,361}\right]$$
(2.19)

$$f_G(t_{w,k}) = \frac{1}{0.540} \cdot exp \left[\frac{11,762 - t_{w,k}}{0.540} - exp \left(\frac{11,762 - t_{w,k}}{0.540} \right) \right]$$
(2.20)

Степень соответствия между выбранной теоретической кривой (гипотезой) и статистическим распределением устанавливается с помощью критериев согласия. Наиболее употребляемыми критериями согласия являются: критерий Колмогорова, критерий X^2 (хи-квадрат), критерий Пирсона и критерий ω_n^2 (омега-квадрат) Мизеса [5, 8]. Если ставится задача по результатам эксперимента проверить согласованность теоретического и опытного распределения, то рекомендуется использовать критерий Колмогорова.

Критерий согласия Колмогорова отличается свой простотой. Вычислив по экспериментальным данным величину:

$$z = D_k \cdot \sqrt{k} \tag{2.21}$$

где: $D_k = max | f(t_{w,k}) - f_i(t_{w,k})|$ по графику (см. рис. 2.2) определяют вероятность. Если K(z) > 0,3...0,4, то аппроксимирующую функцию считают согласующуюся с экспериментальными данными; если K(z) < 0,1...0,05, то гипотезу отвергают.

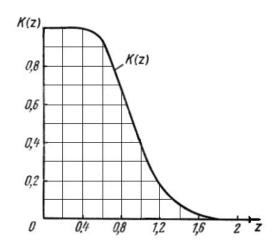


Рис. 2.2. График функции K(z) критерия согласия Колмогорова

Полученные результаты (см. табл. 2.7, 2.8), свидетельствуют о возможности применения для описания выборочных данных: нормального закона и закона Вейбулла.

Окончательно с вероятностью 0,67 будем полагать, что неизвестное распределение $f(t_{w,k})$ мало отличается от функции нормального закона распределения $f_N(t_{w,k})$, которое можно использовать в дальнейшем практическом расчете.

Таблица 2.7

Интервал, мм	$f(t_{w,k})$	$f_N(t_{w,k})$	$f_{V}(t_{w,k})$	$f_G(t_{w,k})$
10,511,1	0,220	0,106	0,025	0,029
11,111,7	0,175	0,359	0,259	0,512
11,712,3	0,658	0,572	0,463	0,626
12,312,9	0,483	0,432	0,410	0,317
12,913,5	0,132	0,154	0,274	0,121

Продолжение таблицы 2.7

Интервал,	$\left f\left(t_{w,k}\right)-f_{N}\left(t_{w,k}\right)\right $	$\left f\left(t_{w,k}\right)-f_{v}\left(t_{w,k}\right)\right $	$ f(t_{w,k})-f_G(t_{w,k}) $
MM			
10,511,1	0,114	0,195	0,191
11,111,7	0,184	0,084	1,337
11,712,3	0,086	0,195	0,032
12,312,9	0,051	0,073	0,166
12,913,5	0,022	0,142	0,011

Таблица 2.8

Закон распределения случайной величины	$D_k = max f(t_{w,k}) - f_i(t_{w,k}) $	K(z)
Нормальный	0,184	0,67
Вейбулла	0,195	0,48
Гумбеля	0,337	0,08

При заданном значении доверительной вероятности P и числе измерений k определяем коэффициент Стьюдента \mathbf{t}_p (см. приложение 1). Учитывая, $\mathbf{\Delta}_{\mathbf{n}} = \pm 2\sigma$ при P = 0.95 (ГОСТ 8.051-81 [7]), значение доверительной вероятности принимаем P = 0.95 (примечание: например, при значение P = 0.68; при значение P = 0.99). Тогда при числе «степеней свободы» = 18 и P = 0.95 коэффициент Стьюдента = 2.101.

Примечание: Если закон распределения параметра и погрешности неизвестен и нет оснований утверждать, что от близок к нормальному, но известно среднее квадратическое отклонение погрешности измерения, то коэффициентами Стьюдента пользоваться нельзя. В этом случае доверительные интервалы строят на основе неравенства Чебышева:

$$P\{t_{w,k} - \gamma_p \cdot \sigma_{t_{w,k}} \le t_w \le t_{w,k} + \gamma_p \cdot \sigma_{t_{w,k}}\} \ge 1 - \frac{1}{\gamma_p^2}, \tag{2.22}$$

полагая симметричность фактического закона распределения.

Находим границы доверительного интервала для случайной составляющей:

$$\Delta t_{w,k} = \pm t_p \cdot \frac{\sigma_{t_{w,k}}}{\sqrt{n_c}} = \pm 2,101 \cdot \frac{0,693}{\sqrt{18}} = \pm 0,343 \text{ MM},$$
 (2.23)

где: n_c — число «степеней свободы» (для выборок с числом значений $k \ge 50$ принимают $n_c \approx k$; для малых выборок при k < 50 принимают $n_c = k - 1$).

Если закон распределения параметра отличный от нормального, тогда, используя неравенство (2.22), границы доверительного интервала для случайной составляющей можно определить по формуле:

$$\Delta t_{w,k} = \pm \gamma_p \cdot \sigma_{t_{w,k}} \tag{2.24}$$

где: - γ_p коэффициент Чебышева (см. табл. 2.9).

Таблица 2.9

P	0,5	0,6	0,7	0,8	0,9	0,95
γ_p	1,4	1,6	1,8	2,2	3,2	4,4

Если величина $\Delta t_{w,k}$ сравнима с абсолютным значением погрешности средства измерения, то величину Δ_{met} считают неисключенной систематической составляющей и в качестве доверительного интервала вычисляют величину:

$$\Delta_{\Sigma} = \sqrt{\Delta_{t_{W,k}}^2 + \left[\frac{t_p(\infty)}{3} \cdot \Delta_{met}\right]^2} = \sqrt{\Delta_{t_{W,k}}^2 + \left[\frac{1,96}{3} \cdot \Delta_{met}\right]^2}$$
(2.25)

В нашем случае значение $\Delta t_{w,k} = 0.343$ сравнимо со значением $\Delta_{met} = 0.260$, следовательно:

$$\Delta_{\Sigma} = \sqrt{0.343^2 + \left[\frac{1.96}{3} \cdot 0.260\right]^2} = 0.383 \,\text{mm}$$
(2.26)

Окончательный результат: $t_w = t_{w,k} \pm \Delta_{\Sigma} = 12,074 \pm 0,383$ мм.

Таблица 2.10

	Рез	Результаты измерений толщины стенки главной балки t_w								
Последний	(0	(образец: полоса из стального проката), выполненного								
номер зачетной	штан	генциј	ркулем	и по ГО	OCT 16	66-89*	с вели	ічиной	отсче	та по
книжки	нон	иусу 0	,1 мм.	Точно	сть то.	лщинь	і прока	ата опр	еделя	ется
		CI	имметр	ичны	и поле	м допу	/cка ±	0,65 м	M.	
0	12.1	12.4	12.2	8.2	12.5	12.3	12.7	13.2	11.6	12.4
0	11.4	11.5	12.6	12.7	11.5	12.4	11.4	12.2	12.3	13.0
1	12.6	12.4	12.2	10.2	11.3	13.5	15.2	14.1	12.7	12.4
1	12.5	12.3	12.7	13.2	11.6	12.4	11.4	12.2	12.3	13.0
2	12.3	12.4	12.2	8.2	12.5	12.7	12.7	13.2	11.6	12.4
Δ	12.4	11.5	12.6	12.7	11.5	12.4	11.4	11.2	12.3	13.0
3	12.1	12.4	12.2	8.2	12.5	10.3	12.7	15.2	11.6	12.4
3	13.4	11.5	12.6	12.7	11.5	12.4	11.4	12.2	12.3	13.0
4	12.1	12.4	12.2	8.2	12.5	9.3	11.7	10.2	11.6	12.4
4	13.4	11.5	12.6	12.7	11.5	12.4	11.4	12.2	12.3	13.0
5	12.6	12.4	12.2	8.2	12.5	12.3	12.7	13.2	11.6	12.4
5	11.2	11.5	12.6	12.7	10.5	12.4	11.4	12.2	10.3	13.0
	12.1	12.4	15.2	8.2	12.5	12.3	12.7	15.2	11.6	12.4
6	11.4	11.5	12.6	12.7	11.5	12.4	11.4	12.2	12.3	13.0
7	12.7	13.4	14.2	8.2	12.5	13.3	13.7	10.2	11.6	10.4
/	11.9	11.5	12.6	12.7	11.5	12.4	10.4	12.2	12.3	13.0
8	12.5	12.4	12.2	8.2	12.5	12.3	10.7	13.2	11.6	12.4
8	11.7	13.5	12.6	13.7	11.5	13.4	10.4	12.2	10.3	13.0
	12.4	12.4	12.2	8.2	12.5	12.3	12.7	13.2	11.6	12.4
9	9.1	9.7	13.2	14.3	15.1	14.2	13.3	10.7	9.9	11.1

Часть 3 Оценка надежности строительных конструкций по их повреждениям

Под надежностью строительного объекта понимается свойство выполнять заданные функции в течение требуемого промежутка времени [4]. В понятие надежности входит: безотказность, долговечность и ремонтопригодность.

<u>Безотказность</u> – способность строительного объекта сохранять заданные функции в течение определенного срока службы.

<u>Долговечность</u> – оценивается продолжительностью его работоспособного состояние при установленной системе ремонта.

<u>Ремонтопригодность</u> – приспособленность конструкций к периодическим осмотрам и ремонтам.

На практике надежность сооружения косвенно может быть оценена в виде коэффициента запаса прочности сооружения, категорией его технического состояния или условной надежностью в баллах.

Влияние повреждений на надежность конструкций оценивается посредством уменьшения общего нормируемого коэффициента надежности (запаса) $\gamma_{\rm o} = \gamma_{\rm m} \cdot \gamma_{\rm c} \cdot \gamma_{\rm f} \cdot \gamma_{\rm n}$ конструкций в процессе эксплуатации, где $\gamma_{\rm m}$ - коэффициент надежности по материалу, $\gamma_{\rm c}$ - коэффициент условий работы, $\gamma_{\rm f}$ - коэффициент надежности по нагрузке, $\gamma_{\rm n}$ - коэффициент надежности по назначению.

Относительная надежность конструкции при эксплуатации $y = \gamma/\gamma_0$ и поврежденность конструкции $\varepsilon = 1 - y$, где γ - фактический коэффициент надежности конструкции с учетом имеющихся повреждений.

Значения y и ε , а также приближенная стоимость C ремонта по восстановлению первоначального качества в процентах по отношению к первоначальной стоимости для различных категорий технического состояния конструкций приведены в таблице 3.1.

Таблица 3.1

Категори	Описание технического состояния			
я техничес кого состояни		Относительна я надёжность $y = \gamma/\gamma_0$	Повреждён ность ε = 1 - y	Стоимость ремонта <i>С</i> , %
1	2	3	4	5
1	Нормальное исправное состояние. Отсутствуют видимые повреждения. Выполняются все требования действующих норм и проектной документации. Необходимости в ремонтных работах нет.	1	0	0
2	Удовлетворительное работоспособное состояние. Несущая способность конструкций обеспечена, требования норм	0,95	0,05	0-11

	•			
	по предельным состояниям ІІ группы и долговечности могут быть нарушены, но обеспечиваются нормальные условия эксплуатации. Требуется устройство антикоррозийного покрытия, устранение мелких повреждений.			
3	Не совсем удовлетворительное, ограниченно работоспособное состояние. Существующие повреждения свидетельствуют о снижении несущей способности. Для продолжения нормальной эксплуатации требуется ремонт по устранению повреждённых конструкций.	0,85	0,15	12-36
4	Неудовлетворительное, (неработоспособное) состояние. Существующие повреждения свидетельствуют о непригодности к эксплуатации конструкций. Требуется капитальный ремонт с усилением конструкций. До проведения усиления необходимо ограничение действующих нагрузок. Эксплуатация возможна только после ремонта и усиления.	0,75	0,25	37-90
5	Аварийное состояние. Существующие повреждения свидетельствуют о возможности обрушения конструкций. Требуется немедленная разгрузка конструкции и устройство временных креплений, стоек, подпорок, ограждений опасной зоны. Ремонт в основном проводится с заменой аварийных конструкций.	0,65	0,35	91-130

Оценка технического состояния стальных, железобетонных каменных и деревянных конструкций, на основе имеющихся в них повреждений, приведена в таблицах 3.2-3.5. При этом оценка надежности конструкций должна проводиться по максимальному повреждению на длине конструкции. Для оценки категории состояния конструкции необходимо наличие хотя бы одного признака, приведенного в графах 2, 3 таблиц.

Общая оценка поврежденности здания и сооружения производится по формуле

$$\varepsilon = \frac{\alpha_1 \,\varepsilon_1 + \alpha_1 \,\varepsilon_1 + \cdots \,\alpha_i \,\varepsilon_i}{\alpha_1 + \alpha_2 + \cdots + \alpha_i},\tag{3.1}$$

где ε_1 , ε_2 , ... ε_i - максимальная величина повреждений отдельных видов конструкций, α_1 , α_2 , ... α_i - коэффициенты значимости отдельных видов конструкций.

При оценке величин повреждений учитывают их максимальную величину, так как авария здания или сооружения обычно происходит из-за наличия критического дефекта в отдельно взятой конструкции.

Коэффициенты значимости конструкций устанавливаются на основании экспертных оценок, учитывающих социально-экономические последствия разрушения отдельных видов конструкций, характера разрушения (разрушение с предварительным оповещением посредством развития пластических деформаций или мгновенное хрупкое разрушение). При отсутствии данных коэффициенты значимости α_i , принимаются: для плит и панелей перекрытия и покрытия α , = 2, для балок α = 4, для ферм α = 7, для колонн $\alpha = 8$, для несущих стен и фундаментов $\alpha = 3$, для прочих строительных конструкций $\alpha = 2$.

Относительная оценка надежности здания или сооружения производится по формуле

$$y = 1 - \varepsilon \tag{3.2}$$

 Таблица 3.2

 Оценка технического состояния стальных конструкций

	оценка темни неского сост	ояния стальных конструкции
Категория состояния конструкции	Признаки силовых воздействий на конструкцию	Признаки воздействия внешней среды на конструкцию
1	Нет	Нет
2	Нет	Местами разрушено антикоррозионное покрытие. На отдельных участках коррозия отдельными пятнами с поражением до 5% сечения. Местные погнутости от транспортных средств и другие повреждения, приводящие к ослаблению сечения до 5%.
3	Прогибы изгибаемых элементов превышают 1/150 пролета.	Пластинчатая ржавчина с уменьшением площади сечения несущих элементов до 15%. Местные погнутости от ударов транспортных средств и другие механические повреждения, приводящие к ослаблению сечения до 15%. Погнутость узловых фасонок ферм.
4	Прогибы изгибаемых элементов более 1/75 пролета. Потеря местной устойчивости конструкций (выпучивание стенок и поясов балок и колонн). Срез отдельных болтов или заклепок в многоболтовых соединениях. Наличие трещин во второстепенных элементах.	Коррозия с уменьшением расчетного сечения несущих элементов до 25%. Трещины в сварных швах или околошовной зоне Механические повреждения, приводящие к ослаблению сечения до 25%. Отклонения ферм от вертикальной плоскости более 15 мм. Расстройство узловых соединений от проворачивания болтов или заклепок.
5	Прогибы изгибаемых элементов более 1/50 пролета. Потеря общей устойчивости балок или сжатых элементов. Разрыв растянутых элементов ферм. Наличие трещин в основном материале элементов.	Коррозия с уменьшением расчетного сечения несущих элементов более 25%. Расстройство стыков со взаимным смещением опор.

Таблица 3.3 Оценка технического состояния железобетонных конструкций

	ценка технического состояния железоб	
Категория	Признаки силовых воздействий	Признаки воздействия внешней
состояния	на конструкцию	среды
конструкци	на конструкцию	на конструкцию
1	Волосяные трещины (до 0,1 мм).	Имеются отдельные раковини выбоины.
2	Трещины в растянутой зоне бетона не превышают 0,3 мм.	На отдельных участках с малой величиной защитного слоя проступают следы коррозии распределительной арматуры или хомутов. Шелушение ребер конструкций. На поверхности бетона мокрые или масляные пятна,
3	Трещины в растянутой зоне бетона до 0,5 мм.	Продольные трещины в бетоне вдоль арматурных стержней от коррозии арматуры. Коррозия арматуры до 10% площади стержней. Бетон в растянутой зоне на глубине защитного слоя между стержнями арматуры легко
4	Ширина раскрытия нормальных трещин в балках не более 1 мм и протяженность трещин более 3/4 высоты балки. Сквозные нормальные трещины в колоннах не более 0,5 мм. Прогибы изгибаемых элементов более 1/75 пролета.	Отслоение защитного слоя бетона и оголение арматуры. Коррозия арматуры до 15%. Снижение прочности бетона до 30%.
5	Ширина раскрытия нормальных трещин в балках более 1 мм при протяженности трещин более 3/4 их высоты. Косые трещины, пересекающие опорную зону и зону анкеровки растянутой арматуры балок. Сквозные наклонные трещины в сжатых элементах. Хлопающие трещины в конструкциях, испытывающих наклонопеременные воздействия. Выпучивание арматуры в сжатой зоне колонн. Разрыв отдельных стержней рабочей арматуры в растянутой зоне, разрыв хомутов в зоне наклонной трещины. Раздробление бетона в сжатой зоне. Прогибы изгибаемых элементов более 1/50 пролета при наличии трещин в растянутой зоне более 0,5 мм.	Оголение всего диаметра арматуры стержня. Коррозия арматуры более 15% сечения. Снижение прочности бетона более 30%. Расстройство стыков.

 Таблица 3.4

 Оценка технического состояния кирпичных конструкций

	Оценка технического состояния кир	
Категория состояния конструкции	Признаки силовых воздействий на конструкцию	Признаки воздействия внешней среды на конструкцию
1	Трещины в отдельных кирпичах, не пересекающие растворные швы.	Нет
2	Волосные трещины, пересекающие не более двух рядов кладки (длиной 15-18	Выветривание раствора швов до 1 см.
3	Трещины, при пересечении не более четырех рядов кладки.	Размораживание и выветривание кладки, отслоение облицовки на глубину до 15% толщины.
4	Вертикальные и косые трещины в несущих стенах на высоту более четырех рядов кладки. Образование вертикальных трещин между продольными и поперечными стенами, разрывы или выдергивание отдельных стальных связей и анкеров укрепления стен к колоннам и перекрытиям. Местное (краевое) повреждение кладки на глубину до 2 см под опорами ферм, балок и перемычек в виде трещин и лещадок; вертикальные трещины по концам опор, пересекающие не более трех рядов кладки	Размораживание и выветривание кладки, отслоение облицовки на глубину до 25% толщины. Наклоны и выпучивание стен и фундаментов в пределах этажа не более чем на 1/6 их толщины. Смещение плит перекрытий на опорах не более 1/5 глубины заделки, но не более 2 см.
5	Вертикальные и косые трещины в несущих стенах и столбах на высоту всей стены. Отрыв продольных стен от 'поперечных в местах их пересечения, разрывы или выдергивание стальных связей и анкеров, крепящих стены к колоннам и перекрытиям. Повреждение кладки под опорами ферм, балок и перемычек в виде трещин, раздробления камня, образование вертикальных или косых трещин, пересекающих более трех рядов кладки, в месте примыкания пилястры к стене.	Размораживание и выветривание кладки на глубину до 40% толщины. Наклоны и выпучивание стен в пределах этажа на 1/3 их толщины и более, смещение (сдвиг) стен, столбов и фундаментов по горизонтальным швам. Смещение плит перекрытий на опорах более 1/5 глубины заделки в стене. Полная потеря прочности раствора (раствор легко разбирается руками).

 Таблица 3.5

 Оценка технического состояния деревянных конструкций

оденка темни теского состояния деревянных конструкции		
Категория состояния конструкции	Признаки силовых воздействий на конструкцию	Признаки воздействия внешней среды на конструкцию
1	Нет	Волосные усадочные трещины в
2	Ослабление креплений отдельных болтов, хомутов, скоб	Большие щели между досками наката и балками перекрытия
3	Продольные трещины в конструкциях. Сдвиги и отслоения в швах и в узлах конструкций заметные на глаз. Прогибы изгибаемых элементов превышают предельные значения СНиП II-26-ВО	Следы протечек, мокрые пятна в конструкциях. Гниль в мауэрлате и в концах стропильных ног, снижающая прочность до 15 %
4	Глубокие трещины в элементах. Трещины, в работающих на скалывание торцах по ширине более 25% от толщины элемента. Сильное обмятие и зазоры более 3 мм в рабочих поверхностях врубок. Смятие древесины вдоль волокон по линии болтов и нагелей на 1/2 их диаметра. Потеря местной устойчивости элементов конструкций. Прогибы изгибаемых элементов более 1/75 пролета	Гниль в местах заделки балок в наружные стены. Гниль в мауэрлате, стропилах, обрешетке, накате, снижающая прочность до 25%
5	Прогибы изгибаемых элементов более 1/50 пролета. Быстроразвивающиеся деформации. Сквозные трещины в накладках стыков по линии болтов ферм. Трещины в растянутых элементах, выходящие на кромки. Надломы и разрушения отдельных конструкций. Скалывание врубок. Потеря устойчивости конструкций (Поясов ферм, арок, колонн)	Поражение гнилью и жучком строительных конструкций, приводящее к снижению их прочности более 25%

При проведении экспресс-обследований общая оценка технического состояния зданий и сооружений может быть произведена по ранее приведенным таблицам, в зависимости от имеющихся в них характерных повреждений.

Величину повреждения строительных конструкций через t лет ее эксплуатации определяют по формуле

$$\varepsilon = 1 - e^{-\lambda t},\tag{3.3}$$

где $\lambda = \frac{-lny}{t\varphi}$ - постоянная износа, определяемая по данным обследования на основании изменения несущей способности в момент обследования; y — относительная надежность, определяемая по категории технического состояния конструкции в зависимости от повреждений по табл. 1, $t\varphi$ - срок эксплуатации в годах на момент обследования.

Срок эксплуатации конструкции до капитального ремонта в годах определяется по формуле

$$t = \frac{0.16}{\lambda},\tag{3.4}$$

где λ - постоянная износа, определяемая по п. 2.2.

Срок эксплуатации конструкции до аварийного состояния $t_a = \frac{0,22}{\lambda}$.

Список литературы

- 1. Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелого бетона (к СП 52-102-2004)
- 2. СП 13-102-2003 Правила обследования несущих строительных конструкций зданий и сооружений
- 3. СП 52-101-2003 Свод правил по проектированию и строительству. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
- 4. Добромыслов А.Н. Оценка надежности зданий и сооружений по внешним признакам. Справочное пособие. М.: Издательство АСВ, 2004, 72 с.