МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра высшей математики

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ, НЕОПРЕДЕЛЕННЫЕ, ОПРЕДЕЛЕННЫЕ, КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Задания по курсу высшей математики для практических занятий студентам 1 курса дневного отделения (бакалавриат), направлений подготовки 051000 – Профессиональное обучение, 080200 – Менеджмент, 190100 – Наземные транспортнотехнологические комплексы, 190700 – Технология транспортных процессов, 230400 – Информационные системы и технологии, 270800 – Строительство, 280700 – Техносферная безопасность

УДК 517 ББК 22.1 Л12

Л12 Функции многих переменных, неопределенные, определенные, кратные и криволинейные интегралы: Задания по курсу высшей математики для практических занятий студентам 1 курса дневного отделения (бакалавриат), направлений подготовки 051000 — Профессиональное обучение, 080200 — Менеджмент, 190100 — Наземные транспортно-технологические комплексы, 190700 — Технология транспортных процессов, 230400 — Информационные системы и технологии, 270800 — Строительство, 280700 — Техносферная безопасность / Сост.: А.Г. Лабуткин, В.П. Деревенский. — Казань: Изд-во Казанск. гос. архитект.-строит. ун-та, 2014. — 28 с.

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

Задания для практических занятий по функциям многих переменных, неопределенному, определенному, кратным и криволинейным интегралам для студентов 1 курса дневного отделения (второй семестр, бакалавриат).

Рецензент Кандидат физико-математических наук. доцент Ф.Г. Габбасов

УДК 517 ББК 22.1

- © Казанский государственный архитектурно-строительный университет, 2014
- © Лабуткин А.Г., Деревенский В.П., 2014

ПЛАН ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО МАТЕМАТИКЕ ДЛЯ БАКАЛАВРИАТА (2-й СЕМЕСТР, 16 ЗАНЯТИЙ)

Занятие 1. Область определения и частные производные функций двух переменных

Аудиторное задание

1. Найти области определения функций:

1) (2984)
$$z = \ln(y^2 - 4x + 8)$$
, 2) (2986) $z = \sqrt{x + y} + \sqrt{x - y}$.

Ответы: 1) $y^2 > 4x - 8$; 2) Внутренняя часть правого вертикального угла, образованного биссектрисами координатных углов, включая сами биссектрисы: $x + y \ge 0$, $x - y \ge 0$.

2. Найти частные производные данных функций по каждой из независимых переменных:

1) (3037)
$$z = x^3y - y^3x$$
; 2) (3038) $z = axe^{-y} + by$; 3) (3040) $z = \frac{x^3 + y^3}{x^2 + y^2}$;

4) (3042)
$$z = x\sqrt{y} + \frac{y}{\sqrt[3]{x}}$$
; 5) (3052) $z = \ln(x + \ln y)$;

6) (3054)
$$z = \sin \frac{x}{y} \cos \frac{y}{x}$$
; 7) (3069) $f(x, y) = x + y - \sqrt{x^2 + y^2}$ в точке (3,4);

8) (3070)
$$z = \ln\left(x + \frac{y}{2x}\right)$$
 в точке (1,2).

Ответы: 1)
$$\frac{\partial z}{\partial x} = 3x^2y - y^3$$
, $\frac{\partial z}{\partial y} = x^3 - 3y^2x$; 2) $\frac{\partial \theta}{\partial x} = ae^{-t}$, $\frac{\partial \theta}{\partial t} = -axe^{-t} + b$;

3)
$$\frac{\partial z}{\partial x} = \frac{x^4 + 3x^2y^2 - 2xy^3}{\left(x^2 + y^2\right)^2}$$
, $\frac{\partial z}{\partial y} = \frac{y^4 + 3x^2y^2 - 2x^3y}{\left(x^2 + y^2\right)^2}$;

4)
$$\frac{\partial z}{\partial x} = \sqrt{y} - \frac{y}{3\sqrt[3]{x^4}}$$
, $\frac{\partial z}{\partial y} = \frac{x}{2\sqrt{y}} + \frac{1}{\sqrt[3]{x}}$; 5) $\frac{\partial z}{\partial x} = \frac{1}{x + \ln y}$, $\frac{\partial z}{\partial y} = \frac{1}{y(x + \ln y)}$;

6)
$$\frac{\partial z}{\partial x} = \frac{1}{y}\cos\frac{x}{y}\cos\frac{y}{x} + \frac{y}{x^2}\sin\frac{x}{y}\sin\frac{y}{x}, \frac{\partial z}{\partial y} = -\frac{x}{y^2}\cos\frac{x}{y}\cos\frac{y}{x} - \frac{1}{x}\sin\frac{x}{y}\sin\frac{y}{x};$$

3. (3181)
$$z = x^3 + xy^2 - 5xy^3 + y^5$$
. Показать, что $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.

4. Найти
$$\frac{\partial^2 z}{\partial x^2}$$
, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$ от данных функций:

1) (3188)
$$z = \sin^2(ax + by)$$
; 2) (3189) $z = e^{xe^y}$.

Ответы: 1)
$$\frac{\partial^2 z}{\partial x^2} = 2a^2 \cos(2ax + 2by), \frac{\partial^2 z}{\partial y^2} = 2b^2 \cos(2ax + 2by),$$

$$\frac{\partial^2 z}{\partial x \partial y} = 2ab \cos(2ax + 2by) \; ; \; 2) \; \frac{\partial^2 z}{\partial x^2} = e^{xe^y + 2y} \; ,$$

$$\frac{\partial^2 z}{\partial y^2} = x \left(1 + x e^y \right) e^{x e^y + y}, \quad \frac{\partial^2 z}{\partial x \partial y} = \left(1 + x e^y \right) e^{x e^y + y}.$$

Домашнее задание

1. Найти области определения функций:

1) (2983)
$$z = \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$$
, 2) (2985) $z = \frac{1}{R^2 - x^2 - y^2}$.

Ответы: 1) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$; 2) Вся плоскость, за исключением точек окружности $x^2 + y^2 = R^2$.

2. Найти частные производные данных функций по каждой из независимых переменных:

1) (3039)
$$z = \frac{u}{v} + \frac{v}{u}$$
; 2) (3041) $z = (5x^2y - y^3 + 7)^3$; 3) (3047) $z = \ln(x^2 + y^2)$;

4) (3051)
$$z = e^{-\frac{x}{y}}$$
; 5) (3053) $u = arctg \frac{v+w}{v-w}$;

6) (3061)
$$u = \sqrt{x^2 + y^2 + z^2}$$

Ответы: 1)
$$\frac{\partial z}{\partial u} = \frac{1}{v} - \frac{v}{u^2}$$
, $\frac{\partial z}{\partial v} = \frac{u}{v^2} + \frac{1}{u}$; 2) $\frac{\partial z}{\partial x} = 30xy(5x^2y - y^3 + 7)^2$,

$$\frac{\partial z}{\partial y} = 3\left(5x^2y - y^3 + 7\right)^2 \left(5x^2 - 3y^2\right); \quad 3) \quad \frac{\partial z}{\partial x} = \frac{2x}{x^2 + y^2}, \quad \frac{\partial z}{\partial y} = \frac{2y}{x^2 + y^2};$$

4)
$$\frac{\partial z}{\partial x} = -\frac{1}{v}e^{-x/y}$$
, $\frac{\partial z}{\partial y} = \frac{x}{v^2}e^{-x/y}$; 5) $\frac{\partial z}{\partial v} = -\frac{w}{v^2 + w^2}$, $\frac{\partial z}{\partial w} = \frac{v}{v^2 + w^2}$;

6)
$$\frac{\partial u}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
, $\frac{\partial u}{\partial y} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$, $\frac{\partial u}{\partial z} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$.

3. (3183)
$$z = e^x(\cos y + x \sin y)$$
. Показать, что $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.

4. Найти
$$\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2}$$
 от данной функции:

$$(3187) \quad z = arctg \frac{x+y}{1-xy} \quad .$$

Otbet:
$$\frac{\partial^2 z}{\partial x^2} = -\frac{2x}{\left(1 + x^2\right)^2}, \ \frac{\partial^2 z}{\partial y^2} = -\frac{2y}{\left(1 + y^2\right)^2}, \ \frac{\partial^2 z}{\partial x \partial y} = 0$$

Занятие 2. Дифференцирование сложной и неявной функций. Полный дифференциал и его применение в приближенных вычислениях

Аудиторное задание

1. Найти производные сложных функций:

1) (3124)
$$u = e^{x-2y}$$
, $x = \sin t$, $y = t^3$; $\frac{du}{dt} = ?$ 2) (3126) $z = \arcsin(x-y)$, $x = 3t$, $y = 4t^3$; $\frac{dz}{dt} = ?$ 3) (3128) $z = x^2 \ln y$, $x = \frac{u}{v}$, $y = 3u - 2v$; $\frac{\partial z}{\partial u} = ?$ 4) (3130) $z = \arctan(xy)$, найти $\frac{dz}{dx}$, если $y = e^x$; 5) (3132) $z = tg(3t + 2x^2 - y)$, $x = \frac{1}{t}$, $y = \sqrt{t}$; $\frac{dz}{dt} = ?$ Ответы: 1) $e^{\sin t - 2t^3} \left(\cos t - 6t^2\right)$; 2) $\frac{3 - 12t^2}{\sqrt{1 - (3t - 4t^3)^2}}$; 3) $\frac{\partial z}{\partial u} = 2\frac{u}{v^2} \ln(3u - 2v) + \frac{3u^2}{v^2(3u - 2v)}$, $\frac{\partial z}{\partial v} = -\frac{2u^2}{v^3} \ln(3u - 2v) - \frac{2u^2}{v^2(3u - 2v)}$; 4) $\frac{dz}{dx} = \frac{e^x(x+1)}{1 + x^2e^{2x}}$; 5) $\frac{dz}{dt} = \left(3 - \frac{4}{t^3} - \frac{1}{2\sqrt{t}}\right) / \cos^2\left(3t + \frac{2}{t^2} - \sqrt{t}\right)$.

- 2. Найти производную $\frac{dy}{dx}$ от функций, заданных неявно:
- 1) (3145) $x^3y y^3x = a^4$; 2) (3148) $(x^2 + y^2)^2 a^2(x^2 y^2) = 0$;
- 3) (3149) $\sin(xy) e^{xy} x^2y = 0$; 4) (3153) $yx^2 = e^y$.
- Ответы: 1) $\frac{3x^2y-y^3}{3y^2x-x^3}$; 2) $-\frac{x}{y}\cdot\frac{2(x^2+y^2)-a^2}{2(x^2+y^2)+a^2}$;
- 3) $\frac{y}{x} \cdot \frac{2x + e^{xy} \cos(xy)}{\cos(xy) e^{xy} x}$; 4) $\frac{2y}{x(y-1)}$.
- 3. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ от функций, заданных неявно:
- 1) (3162) $x^2 2y^2 + z^2 4x + 2z 5 = 0$; 2) (3164) $e^z xyz = 0$.

Ответы: 1)
$$\frac{\partial z}{\partial x} = \frac{2-x}{x+1}$$
, $\frac{\partial z}{\partial y} = \frac{2y}{x+1}$; 2) $\frac{\partial z}{\partial x} = \frac{z}{x(z-1)}$, $\frac{\partial z}{\partial y} = \frac{z}{y(z-1)}$.

- 4. Найти полные дифференциалы функций:
- 1) (3104) $z = \arcsin \frac{x}{y}$; 2) (3108) z = arctg(xy); 3) (3109) $u = x^{yz}$.
- Ответы: 1) $\frac{y dx x dy}{y \sqrt{y^2 x^2}}$; 2) $\frac{x dy + y dx}{1 + x^2 y^2}$;
- 3) x^{zy-1} $\left(yz \, dx + zx \ln x \, dy + xy \ln x \, dz\right)$.
- 5. (3114) Вычислить приближенно $\ln(\sqrt[3]{1.03} + \sqrt[4]{0.98} 1)$. Ответ: ≈ 0.005 .

Домашнее задание

- 1. Найти производные сложных функций:
- 1) (3125) $u = z^2 + y^2 + zy$, $z = \sin t$, $y = e^t$; $\frac{du}{dt} = ?$
- 2) (3127) $z = x^2 y y^2 x$, $x = u \cos v$, $y = u \sin v$; $\frac{\partial z}{\partial u} = ? \frac{\partial z}{\partial v} = ?$
- 3) (3129) $u = \ln(e^x + e^y)$; найти $\frac{du}{dx}$ если $y = x^3$;

4) (3131)
$$u = \arcsin \frac{x}{z}$$
; найти $\frac{du}{dx}$, если $z = \sqrt{x^2 + 1}$;

5) (3133)
$$u = \frac{e^{ax}(y-z)}{a^2+1}$$
, $y = a\sin x$, $z = \cos x$; $\frac{du}{dx} = ?$

Ответы: 1)
$$\frac{du}{dt} = \sin(2t) + 2e^{2t} + e^{t}(\sin t + \cos t)$$
;

2)
$$\frac{\partial z}{\partial u} = 3u^3 \sin v \cos v (\cos v - \sin v), \quad \frac{\partial z}{\partial v} = u^3 (\sin v + \cos v) (1 - 3\sin v \cos v)$$
;

3)
$$\frac{\partial u}{\partial x} = \frac{e^x}{e^x + e^y}$$
, $\frac{du}{dx} = \frac{e^x + 3e^{x^3}x^2}{e^x + e^{x^3}}$; 4) $\frac{du}{dx} = \frac{1}{1 + x^2}$; 5) $\frac{du}{dx} = e^{ax} \sin x$.

2. Найти производную $\frac{dy}{dx}$ от функций, заданных неявно:

1) (3146)
$$x^2y^2 - x^4 - y^4 = a^4$$
; 2) (3151) $xy - \ln y = a$;

3) (3152)
$$arctg \frac{x+y}{a} - \frac{y}{a} = 0$$
.

Ответы: 1)
$$\frac{x(y^2-2x^2)}{y(2y^2-x^2)}$$
; 2) $\frac{y^2}{1-xy}$; 3) $\frac{a^2}{(x+y)^2}$.

3. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ от функций, заданных неявно:

1) (3161)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
; 2) (3163) $z^3 + 3xyz = a^3$.

Ответы: 1)
$$\frac{\partial z}{\partial x} = -\frac{c^2 x}{a^2 z}$$
, $\frac{\partial z}{\partial y} = -\frac{c^2 y}{b^2 z}$; 2) $\frac{\partial z}{\partial x} = -\frac{yz}{xy + z^2}$, $\frac{\partial z}{\partial y} = -\frac{xz}{xy + z^2}$.

4. Найти полные дифференциалы функций:

1) (3102)
$$z = \frac{1}{2} \ln(x^2 + y^2)$$
; 2) (3105) $z = \sin(xy)$;

3) (3107)
$$z = \frac{x^2 + y^2}{x^2 - y^2}$$
.

Ответы: 1)
$$\frac{x dx + y dy}{x^2 + y^2}$$
; 2) $(x dy + y dx)\cos(xy)$; 3) $\frac{4xy(x dy - y dx)}{(x^2 - y^2)^2}$.

5. (3115) Вычислить приближенно $1.04^{2.02}$. Ответ: ≈ 1.08 .

Занятие 3. Экстремум функции двух переменных. Касательная плоскость и нормаль к поверхности. Производная по направлению. Градиент

Аудиторное задание

1. Найти стационарные точки функции:

(3259)
$$z = 2x^3 + xy^2 + 5x^2 + y^2$$

Ответы: (0,0), (-5/3,0), (-1,2), (-1,-2) .

2. Найти точки экстремума функций:

1) (3273)
$$z = x^2 + xy + y^2 + x - y + 1$$
; 2) (3278) $z = x^3 + y^3 - 3xy$.

Ответы: 1) (-1,1); 2) В точке (0,0) нет экстремума. В точке (1,1) – минимум.

3. Найти уравнения касательных плоскостей и нормалей в указанных точках данных поверхностей:

1) (3410)
$$z = 2x^2 - 4y^2$$
 в точке (2,1,4);

2) (3413)
$$z = \sqrt{x^2 + y^2} - xy$$
 в точке (3,4,-7).

Ответы: 1)
$$8x - 8y - z = 4$$
, $\frac{x-2}{8} = \frac{y-1}{-8} = \frac{z-4}{-1}$;

2)
$$17x + 11y + 5z = 60$$
, $\frac{x-3}{17} = \frac{y-4}{11} = \frac{z+7}{5}$.

4. (3439(1)) $\psi(x,y) = x^2 - 2xy + 3y - 1$. Найти проекции градиента в точке (1,2) на оси координат.

Ответ: (-2,1) .

5. Найти производную функции:

- 1) (3451(1)) $z = x^3 3x^2y + 3xy^2 + 1$ в точке M(3,1) по направлению к точке N(6,5) ;
- 2) (3456) $u=x^2y^2z^2$ в точке A(1,-1,3) по направлению к точке B(0,1,1) . Ответы: 1) 0; 2) -22 .

8

Домашнее задание

1. Найти точки экстремума функции:

(3272)
$$z = 4(x - y) - x^2 - y^2$$
.

Ответ: (2,-2).

- 2. (3275) Убедиться, что при $x=\sqrt{2}$, $y=\sqrt{2}$ и при $x=-\sqrt{2}$, $y=-\sqrt{2}$ функция $z=x^4+y^4-2x^2-4xy-2y^2$ имеет минимум.
- 3. (3279) Найти наибольшее и наименьшее значения функции: $z = x^2 y^2$ в круге $x^2 + y^2 \le 4$.

Ответ: Наибольшее и наименьшее значения лежат на границе области; наибольшее значение z=4 в точках (2,0) и (-2,0); наименьшее значение z=-4 в точках (0,2) и (0,-2). Стационарная точка (0,0) не является экстремальной.

4. Для данных поверхностей найти уравнения касательных плоскостей и нормалей в указанных точках:

1) (3411)
$$z = xy$$
 в точке (1,1,1); 2) (3414) $z = arctg \frac{y}{x}$ в точке (1,1, $\frac{\pi}{4}$).

Ответы: 1)
$$x + y - z - 1 = 0$$
, $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$;

2)
$$x-y+2z-\frac{\pi}{2}=0$$
, $\frac{x-1}{1}=\frac{y-1}{-1}=\frac{z-\pi/2}{2}$.

- 5. 1) (3439(2)) $u = 5x^2y 3xy^3 + y^4$. Найти проекции градиента в произвольной точке;
- 2) (3440(1)) $z = x^2 + y^2$. Найти grad z в точке (3,2);
- 3) (3443(2)) Даны функции $z = \sqrt{x^2 + y^2}$ и $z = x 3y + \sqrt{3xy}$. Найти угол между градиентами этих функций в точке (3,4).

Ответы: 1) $\{10xy - 3y^3, 5x^2 - 9xy^2 + 4y^3\}$; 2) 6i + 4j; 3) $\cos \alpha = -0.199$.

- 6. Найти производную функции:
- 1) (3451(2)) z = arctg(xy) в точке M(1,1) по направлению биссектрисы первого координатного угла;
- 2) (3451(3)) $z = x^2y^2 xy^3 3y 1$ в точке A(2,1) по направлению к точке O(0,0);
- 3) (3455(2)) w = xyz в точке A(5,1,2) по направлению к точке B(9,4,14).

Ответы: 1)
$$\frac{\sqrt{2}}{2}$$
; 2) $-\sqrt{5}$; 3) 98/13.

Занятие 4. Коллоквиум по теме «Функции многих переменных»

Занятие 5. Неопределенный интеграл. Непосредственное интегрирование

Аудиторное задание

Пользуясь основной таблицей интегралов и простейшими правилами интегрирования, найти интегралы.

1)
$$(1678) \int \frac{dx}{x^2}$$
; 2) $(1685) \int (\sqrt{x}+1)(x-\sqrt{x}+1)dx$;
3) $(1686) \int \frac{\sqrt{x}-x^3e^x+x^2}{x^3}dx$; 4) $(1698) \int 2\sin^2\frac{x}{2}dx$;
5) $(1700) \int \frac{(1+x)^2dx}{x(1+x^2)}$; 6) $(1707) \int \frac{dx}{(2x-3)^5}$; 7) $(1709) \int \sqrt[5]{(8-3x)^6}dx$;
8) $(1713) \int x\sqrt{1-x^2}dx$; 9) $(1717) \int \frac{x^3dx}{\sqrt[3]{x^4+1}}$; 10) $(1721) \int \frac{\cos x dx}{\sqrt[3]{\sin^2 x}}$;
11) $(1723) \int \frac{\sqrt{\ln x}}{x}dx$; 12) $(1731) \int \sin(2x-3)dx$; 13) $(1738) \int \frac{dx}{2x-1}$;
14) $(1745) \int ctg x dx$; 15) $(1749) \int \frac{dx}{x \ln x}$; 16) $(1755) \int e^{-3x+1} dx$;
17) $(1759) \int \frac{dx}{\sqrt{1-25x^2}}$; 18) $(1762) \int \frac{dx}{2x^2+9}$; 19) $(1773) \int \frac{1+x}{\sqrt{1-x^2}}dx$;
20) $(1786) \int \frac{x+2}{2x-1}dx$; 21) $(1803) \int \frac{dx}{4x^2+4x+5}$; 22) $(1808) \int \cos^2 x dx$.
Ответы: 1) $C - \frac{1}{x}$; 2) $\frac{2}{5}x^2\sqrt{x}+x+C$; 3) $C - \frac{2}{3x\sqrt{x}}-e^x+\ln|x|$;
4) $x-\sin x+C$; 5) $\ln|x|+2\arctan x+C$; 6) $C - \frac{1}{8(2x-3)^4}$;
7) $C - \frac{5}{33}(8-3x)^{11/5}$; 8) $C - \frac{1}{3}\sqrt{(1-x^2)^3}$; 9) $\frac{3}{8}\sqrt[3]{(x^4+1)^2}+C$;
10) $3\sqrt[3]{\sin x}+C$; 11) $\frac{2}{3}\sqrt{(\ln x)^3}+C$; 12) $C - \frac{1}{2}\cos(2x-3)$;

13)
$$\frac{1}{2}\ln|2x-1|+C$$
; 14) $\ln|\sin x|+C$; 15) $\ln|\ln x|+C$; 16) $C-\frac{e^{1-3x}}{3}$;

17)
$$\frac{1}{5} \arcsin 5x + C$$
; 18) $\frac{1}{3\sqrt{2}} \arctan \frac{\sqrt{2}}{3} x + C$; 19) $\arcsin x - \sqrt{1 - x^2} + C$;

20)
$$\frac{1}{2}x + \frac{5}{4}\ln|2x - 1| + C$$
; 21) $\frac{1}{4}arctg\frac{2x + 1}{2} + C$; 22) $\frac{x}{2} + \frac{\sin 2x}{4} + C$.

Домашнее задание

Пользуясь основной таблицей интегралов и простейшими правилами интегрирования, найти интегралы:

1) (1676)
$$\int \sqrt{x} \, dx$$
; 2) (1689) $\int \frac{(1-x)^2}{x\sqrt{x}} \, dx$; 3) (1695) $\int \frac{\cos 2x}{\cos^2 x \sin^2 x} \, dx$;

4) (1699)
$$\int \frac{(1+2x^2)}{x^2(1+x^2)} dx$$
; 5) (1706) $\int (x+1)^{15} dx$;

6) (1710)
$$\int \sqrt{8-2x} \, dx$$
; 7) (1712) $\int 2x\sqrt{x^2+1} \, dx$; 8) (1716) $\int \frac{x^4 dx}{\sqrt{4+x^5}}$;

9) (1732)
$$\int \cos(1-2x)dx$$
; 10) (1740) $\int \frac{x\,dx}{x^2+1}$; 11) (1747) $\int ctg(2x+1)dx$;

12) (1761)
$$\int \frac{dx}{\sqrt{4-x^2}}$$
; 13) (1775) $\int \sqrt{\frac{1-x}{1+x}} dx$; 14) (1784) $\int \frac{3+x}{3-x} dx$;

15) (1801)
$$\int \frac{dx}{x^2 + 2x + 3}$$
; 16) (1809) $\int \sin^2 x \, dx$.

Ответы: 1)
$$\frac{2}{3}\sqrt{x^3} + C$$
; 2) $\frac{2x^2 - 12x - 6}{3\sqrt{x}} + C$; 3) $C - ctg x - tg x$;

4)
$$\arctan x - \frac{1}{x} + C$$
; 5) $\frac{(x+1)^{16}}{16} + C$; 6) $C - \frac{\sqrt{(8-2x)^3}}{3}$;

7)
$$\frac{2}{3}\sqrt{(x^2+1)^3} + C$$
; 8) $\frac{2}{5}\sqrt{4+x^5} + C$; 9) $C - \frac{1}{2}\sin(1-2x)$;

10)
$$\frac{1}{2}\ln(x^2+1)+C$$
; 11) $\frac{1}{2}\ln|\sin(2x+1)|+C$; 12) $\arcsin\frac{x}{2}+C$;

13)
$$\arcsin x + \sqrt{1-x^2} + C$$
; 14) $C - x - 6\ln|3-x|$;

15)
$$\frac{1}{\sqrt{2}} arctg \frac{x+1}{\sqrt{2}} + C$$
; 16) $\frac{x}{2} - \frac{\sin 2x}{4} + C$.

Занятие 6. Интегрирование по частям. Замена переменной

Аудиторное задание

1. Интегрирование по частям:

1) (1832)
$$\int x \sin 2x \, dx$$
; 2) (1839) $\int arctg \sqrt{x} \, dx$; 3) (1846) $\int \ln(x^2 + 1) \, dx$;
4) (1850) $\int x^2 e^{-x} \, dx$; 5) (1860) $\int e^x \sin x \, dx$; 6) (1866) $\int \sqrt{a^2 + x^2} \, dx$.

Ответы: 1)
$$\frac{1}{4}\sin 2x - \frac{1}{2}x\cos 2x + C$$
; 2) $x \arctan \sqrt{x} - \sqrt{x} + \arctan \sqrt{x} + C$;

3)
$$x \ln(x^2 + 1) - 2x + 2 \arctan x + C$$
; 4) $C - e^{-x}(2 + 2x + x^2)$;

5)
$$\frac{e^x(\sin x - \cos x)}{2} + C$$
; 6) $\frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\ln(x + \sqrt{a^2 + x^2}) + C$,

(Положить
$$u = \sqrt{a^2 + x^2}$$
).

2. Замена переменной:

1) (1869)
$$\int \frac{dx}{1+\sqrt{x+1}}$$
 (подстановка $x+1=z^2$); 2) (1884) $\int \frac{dx}{\sqrt{1+e^x}}$;

3) (1890)
$$\int \frac{dx}{x^2 \sqrt{x^2 + a^2}}$$
 (подстановка $x = \frac{1}{z}$ или $x = a t g z$);

4) (1905)
$$\int e^{\sqrt{x}} dx$$
; 5) (1937) $\int x\sqrt{a+x} dx$.

Ответы: 1)
$$2\left[\sqrt{x+1} - \ln\left(1 + \sqrt{x+1}\right)\right] + C$$
; 2) $\ln\frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1} + C$;

3)
$$C - \frac{\sqrt{x^2 + a^2}}{a^2 x}$$
; 4) $2e^{\sqrt{x}} (\sqrt{x} - 1) + C$; 5) $\frac{2}{15} (3x - 2a) \sqrt{(a + x)^3} + C$.

Домашнее задание

1. Интегрирование по частям:

1) (1835)
$$\int x 3^x dx$$
; 2) (1837) $\int x \arctan x dx$;

3) (1842)
$$\int x \cos^2 x \, dx$$
; 4) (1855) $\int \ln^2 x \, dx$.

Ответы: 1)
$$\frac{3^x}{\ln^2 3}(x \ln 3 - 1) + C$$
; 2) $\frac{x^2 + 1}{2} \operatorname{arctg} x - \frac{x}{2} + C$;

3)
$$\frac{x^2}{4} + \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + C$$
; 4) $x(\ln^2 x - 2\ln x + 2) + C$.

2. Замена переменной:

1) (1872)
$$\int \frac{dx}{x\sqrt{x+1}}$$
 (подстановка $x+1=z^2$);

2) (1892)
$$\int \frac{dx}{x\sqrt{x^2-a^2}}$$
 (подстановка $x = \frac{1}{z}$ или $x = \frac{a}{\cos z}$);

3) (1906)
$$\int \sin \sqrt[3]{x} \, dx$$
; 4) (1936) $\int \frac{x \, dx}{\sqrt{1+2x}}$

Ответы: 1)
$$\ln \left| \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} \right| + C$$
; 2) $C - \frac{1}{a} \arcsin \frac{a}{|x|}$;

3)
$$3\left[2-\sqrt[3]{x^2}\cos\sqrt[3]{x}+2\sqrt[3]{x}\sin\sqrt[3]{x}\right]+C$$
;

4)
$$x\sqrt{1+2x}-\frac{1}{3}\sqrt{(1+2x)^3}+C$$
.

Занятие 7. Интегрирование дробно-рациональных функций

Аудиторное задание

1. Знаменатель имеет только действительные различные корни:

1) (2014)
$$\int \frac{2x^2 + 41x - 91}{(x - 1)(x + 3)(x - 4)} dx \; ; \; 2) (2016) \int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx \; .$$
Otherti: 1) $\ln \left| \frac{(x - 1)^4 (x - 4)^5}{(x + 3)^7} \right| + C \; ; \; 2) \frac{x^3}{3} + \frac{x^2}{2} + 4x + \ln \left| \frac{x^2 (x - 2)^5}{(x + 2)^3} \right| + C \; .$

2. Знаменатель имеет только действительные корни; некоторые корни – кратные:

(2022)
$$\int \frac{(x^2 - 3x + 2) dx}{x(x^2 + 2x + 1)} .$$

OTBET:
$$\ln \left| \frac{x^2}{x+1} \right| + \frac{6}{x+1} + C$$
.

3. Знаменатель имеет комплексные различные корни:

1) (2038)
$$\int \frac{x \, dx}{x^3 - 1} \; ; \; 2) (2040) \int \frac{(x^4 + 1) \, dx}{x^3 - x^2 + x - 1} \; .$$
Otbeth: 1)
$$\frac{1}{3} \ln \frac{|x - 1|}{\sqrt{x^2 + x + 1}} + \frac{1}{\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} + C \; ;$$
2)
$$\frac{(x + 1)^2}{2} + \ln \frac{|x - 1|}{\sqrt{x^2 + 1}} - \arctan x + C \; .$$

Домашнее задание

1. Знаменатель имеет только действительные различные корни:

(2017)
$$\int \frac{x^3 - 1}{4x^3 - x} dx$$
.
Otbet:
$$\frac{1}{4}x + \ln|x| - \frac{7}{16}\ln|2x - 1| - \frac{9}{16}\ln|2x + 1| + C$$
.

2. Знаменатель имеет только действительные корни; некоторые корни – кратные:

(2025)
$$\int \frac{x^3 + 1}{x^3 - x^2} dx$$
.
OTBET: $x + \frac{1}{x} + \ln \frac{(x - 1)^2}{|x|} + C$.

3. Знаменатель имеет комплексные различные корни:

1) (2036)
$$\int \frac{dx}{x(x^2+1)}; \ 2) (2037) \int \frac{dx}{1+x^3}; \ 3) (2043) \int \frac{dx}{(x+1)^2(x^2+1)}.$$
Ответы: 1) $\ln \frac{|x|}{\sqrt{x^2+1}} + C; \ 2) \frac{1}{6} \ln \frac{(x+1)^2}{x^2-x+1} + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x-1}{\sqrt{3}} + C;$
3) $\frac{1}{2} \ln |x+1| - \frac{1}{4} \ln (x^2+1) - \frac{1}{2(x+1)} + C.$

Занятие 8. Интегрирование тригонометрических функций

Аудиторное задание

1. Найти интегралы, используя формулы тригонометрии для преобразования подынтегрального выражения.

14

1) (1817)
$$\int \cos(2x)\cos(3x)dx$$
; 2) (1829) $\int \sin^4 x dx$.
Ответы: 1) $\frac{1}{10}\sin 5x + \frac{1}{2}\sin x + C$; 2) $\frac{3}{8}x - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C$.

2. Найти интегралы.

1) (2090)
$$\int \sin^3 x \cos^2 x \, dx$$
; 2) (2094) $\int \frac{dx}{\cos^3 x \sin^3 x}$;

3) (2095)
$$\int \frac{dx}{\sin^4 x \cos^4 x}$$
; 4) (2100) $\int tg^5 x dx$; 5) (2116) $\int \frac{dx}{5 - 4 \sin x + 3 \cos x}$;

6) (2117)
$$\int \frac{dx}{4 - 3\cos^2 x + 5\sin^2 x}$$
; 7) (2121)
$$\int \frac{dx}{\sin^2 x + tg^2 x}$$
.

Ответы: 1)
$$\frac{1}{15}\cos^3 x(3\cos^2 x - 5) + C$$
; 2) $\frac{1}{2}(tg^2x - ctg^2x) + 2\ln|tgx| + C$;

3)
$$\frac{(tg^2x-1)(tg^4x+10tg^2x+1)}{3tg^3x}+C$$
; 4) $\frac{1}{4}tg^4x-\frac{1}{2}tg^2x-\ln|\cos x|+C$;

5)
$$\frac{1}{2-tg\frac{x}{2}} + C$$
; 6) $\frac{1}{3}arctg(3tgx) + C$; 7) $C - \frac{1}{2} \left[ctgx + \frac{1}{\sqrt{2}}arctg\left(\frac{tgx}{\sqrt{2}}\right)\right]$.

Домашнее задание

1. Найти интегралы, используя формулы тригонометрии для преобразования подынтегрального выражения:

1) (1818)
$$\int \sin(2x)\sin(5x)dx$$
; 2) (1826) $\int \cos^3 x dx$.

Ответы: 1)
$$\frac{1}{6}\sin 3x - \frac{1}{14}\sin 7x + C$$
; 2) $\sin x - \frac{\sin^3 x}{3} + C$.

2. Найти интегралы:

1) (2091)
$$\int \frac{\sin^3 x}{\cos^4 x} dx$$
; 2) (2092) $\int \frac{dx}{\cos x \sin^3 x}$;

3) (2093)
$$\int \frac{\sin^4 x}{\cos^2 x} dx$$
; 4) (2098) $\int \cos^6 x dx$;

5) (2110)
$$\int \frac{dx}{5 - 3\cos x}$$
; 6) (2118) $\int \frac{dx}{1 + \sin^2 x}$.

Ответы: 1)
$$\frac{1}{3\cos^3 x} - \frac{1}{\cos x} + C$$
; 2) $\ln|tg x| - \frac{1}{2\sin^2 x} + C$;

3)
$$tg x + \frac{1}{4} \sin 2x - \frac{3}{2}x + C$$
; 4) $\frac{5}{16}x + \frac{1}{12} \sin 2x (\cos^4 x + \frac{5}{4} \cos^2 x + \frac{15}{8}) + C$;

5)
$$\frac{1}{2} \operatorname{arctg} \left(2tg \frac{x}{2} \right) + C$$
; 6) $\frac{1}{\sqrt{2}} \operatorname{arctg} \left(\sqrt{2}tg x \right) + C$.

Занятие 9. Интегрирование иррациональных функций

Аудиторное задание

Найти интегралы:

1) (1882)
$$\int \frac{\sqrt{x}}{\sqrt[3]{x^2 - \sqrt[4]{x}}} dx; \ 2) (2068) \int \frac{dx}{x(\sqrt{x} + \sqrt[5]{x^2})};$$

3) (2070)
$$\int \frac{x \, dx}{(x+1)^{\frac{1}{2}} + (x+1)^{\frac{1}{3}}}; \ 4) (1893) \int \frac{\sqrt{1+x^2}}{x^4} \, dx;$$

5) (1894)
$$\int \frac{\sqrt{1-x^2}}{x^2} dx$$
; 6) (1897) $\int \frac{dx}{x^2 \sqrt{x^2-9}}$;

7) (1900)
$$\int x^2 \sqrt{4-x^2} \, dx$$
; 8) (1902) $\int \sqrt{\frac{x-1}{x+1}} \, \frac{dx}{x^2}$

Ответы: 1)
$$\frac{6}{5} \left[\sqrt[6]{x^5} + 2\sqrt[12]{x^5} + 2\ln \left| \sqrt[12]{x^5} - 1 \right| \right] + C$$
;

2)
$$\ln \frac{x}{(1+\frac{10}{\sqrt{x}})^{10}} + \frac{10}{\sqrt[10]{x}} - \frac{5}{\sqrt[5]{x}} + \frac{10}{3\sqrt[10]{x^3}} - \frac{5}{2\sqrt[5]{x^2}} + C$$
;

3)
$$6\left[\frac{1}{9}(x+1)^{3/2} - \frac{1}{8}(x+1)^{4/3} + \frac{1}{7}(x+1)^{7/6} - \frac{1}{6}(x+1) + \frac{1}{5}(x+1)^{5/6} - \frac{1}{4}(x+1)^{2/3}\right] + C;$$

4) $C - \frac{\sqrt{(1+x^2)^3}}{3x^3}$; 5) $C - \frac{\sqrt{1-x^2}}{x} - \arcsin x$; 6) $\frac{\sqrt{x^2-9}}{9x} + C$;

7)
$$\frac{x}{4}(x^2-2)\sqrt{4-x^2} + 2\arcsin\frac{x}{2} + C$$
 ; 8) $\arccos\frac{1}{|x|} - \frac{\sqrt{x^2-1}}{x} + C$.

Домашнее задание

Найти интегралы:

1) (1879)
$$\int \frac{\sqrt{x}}{\sqrt{x} - \sqrt[3]{x}} dx$$
 (подстановка $x = z^6$);

2) (1881)
$$\int \frac{dx}{\sqrt{x} + \sqrt[4]{x}}$$
; 3) (1898) $\int \frac{dx}{x\sqrt{1+x^2}}$;

4) (2073)
$$\int \frac{x^2 + \sqrt{1+x}}{\sqrt[3]{1+x}} dx$$
.

Ответы:

1)
$$x + \frac{6\sqrt[6]{x^5}}{5} + \frac{3\sqrt[3]{x^2}}{2} + 2\sqrt{x} + 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6\ln\left|\sqrt[6]{x} - 1\right| + C$$
;

2)
$$2\sqrt{x} - 4\sqrt[4]{x} + 4\ln(1 + \sqrt[4]{x}) + C$$
; 3) $\ln\frac{|x|}{1 + \sqrt{x^2 + 1}} + C$;

4)
$$6\sqrt[3]{(1+x)^2} \left[\frac{(1+x)^2}{16} - \frac{1+x}{5} + \frac{\sqrt{1+x}}{7} + \frac{1}{4} \right] + C$$
.

Контрольная работа «Неопределенный интеграл» и коллоквиум «Неопределенный интеграл» во внеаудиторное время.

Занятие 10. Определенный интеграл. Формула Ньютона-Лейбница. Замена переменной. Вычисление площади

Аудиторное задание

1. Вычислить интегралы:

1) (2233)
$$\int_{2}^{-13} \frac{dx}{\sqrt[5]{(3-x)^4}}; \qquad 2) (2237) \int_{0}^{1} (e^x - 1)^4 e^x dx;$$

3) (2240)
$$\int_{1}^{e} \frac{dx}{x\sqrt{1-(\ln x)^2}}; \quad 4) (2242) \quad \int_{1}^{2} \frac{e^{1/x}dx}{x^2}; \quad 5) (2249) \quad \int_{1}^{2} \frac{dx}{x+x^2};$$

6) (2250)
$$\int_{-0.5}^{1} \frac{dx}{\sqrt{8 + 2x - x^2}}; 7) (2255) \int_{-\pi/2}^{-\pi/4} \frac{\cos^3 x \, dx}{\sqrt[3]{\sin x}};$$

8) (2261)
$$\int_{\pi/4}^{\pi/3} \frac{x \, dx}{\sin^2 x}; 9) (2275) \int_{4}^{9} \frac{\sqrt{x}}{\sqrt{x} - 1} dx; 10) (2277) \int_{3}^{8} \frac{x \, dx}{\sqrt{1 + x}};$$

Ответы: 1) $-5(\sqrt[5]{16}-1)$; 2) $0.2(e-1)^5$; 3) $\pi/2$; 4) $e-\sqrt{e}$; 5) $\frac{1}{2}\ln\frac{8}{5}$;

6)
$$\frac{\pi}{6}$$
; 7) -0.083...; 8) $\frac{\pi(9-4\sqrt{3})}{36} + \frac{1}{2}\ln\frac{3}{2}$; 9) 7+2\ln2; 10) $\frac{32}{3}$.

2. Площадь плоской фигуры:

- 1) (2461) Окружность $x^2 + y^2 = 8$ разделена параболой $y = \frac{x^2}{2}$ на две части. Найти площади обеих частей.
- 2) (2467) Вычислить площадь фигуры, заключенной между линией $y = \frac{1}{1+x^2}$ и параболой $y = \frac{x^2}{2}$.
- 3) (2496) Найти площадь фигуры, ограниченной линией $\rho = a \sin 2\varphi$, a > 0 (двухлепестковая роза).

Ответы: 1)
$$2\pi + \frac{4}{3}$$
 и $6\pi - \frac{4}{3}$; 2) $\frac{\pi}{2} - \frac{1}{3}$; 3) $\frac{\pi a^2}{4}$.

Домашнее задание

1. Вычислить интегралы:

1) (2232)
$$\int_{-2}^{-1} \frac{dx}{(11+5x)^3};$$
 2) (2239)
$$\int_{0}^{1} \frac{x \, dx}{(x^2+1)^2};$$
3) (2244)
$$\int_{1}^{e^3} \frac{dx}{x\sqrt{1+\ln x}};$$
 4) (2260)
$$\int_{0}^{\pi/2} x \cos x \, dx;$$
 5) (2264)
$$\int_{0}^{e-1} \ln(x+1) \, dx;$$
6) (2278)
$$\int_{0}^{1} \frac{x \, dx}{1+\sqrt{x}};$$
 7) (2285)
$$\int_{0}^{1} \frac{\sqrt{1-x^2}}{x^6} \, dx.$$

Ответы: 1)
$$\frac{7}{72}$$
; 2) $\frac{1}{4}$; 3) 2; 4) $\frac{\pi}{2}$ – 1; 5) 1; 6) $\frac{5}{3}$ – 2 ln 2; 7) $\frac{8}{15}$.

2. Площадь фигуры:

- 1) (2455) Вычислить площадь фигуры, ограниченной линиями $y^2 = 2x + 1$ и x y 1 = 0.
- 2) (2458) Вычислить площадь фигуры, ограниченной параболами $y=x^2$ и $y=\sqrt{x}$.

3) (2491) Найти площадь фигуры, ограниченной астроидой $x = a\cos^3 t$, $y = a\sin^3 t$ (a > 0).

Ответы: 1)
$$\frac{16}{3}$$
 ; 2) $\frac{1}{3}$; 3) $\frac{3\pi a^2}{8}$.

Занятие 11. Длина дуги кривой. Объем и площадь поверхности тела вращения

Аудиторное задание

- 1. Длина линии:
- 1) (2522) Найти длину дуги линии $y = \ln(1-x^2)$ от $x_1 = 0$ до $x_2 = \frac{1}{2}$.
- 2) (2546) Найти длину кардиоиды $\rho = a(1 + \cos \varphi)$, a > 0.

Ответы: 1)
$$\ln 3 - \frac{1}{2}$$
; 2) 8*a*.

- 2. Объем тела вращения:
- 1) (2555) Вычислить объем тела, ограниченного поверхностью, образованной вращением параболы $y^2 = 4x$ вокруг своей оси (параболоид вращения), и плоскостью, перпендикулярной к его оси и отстоящей от вершины параболы на расстояние, равное единице.
- 2) (2561) Фигура, ограниченная дугами парабол $y = x^2$ и $y^2 = x$, вращается вокруг оси абсцисс. Вычислить объем тела, которое при этом получается.
- 3) (2564) Вычислить объем тела, полученного от вращения фигуры, ограниченной параболой $y = 2x x^2$ и осью абсцисс, вокруг оси ординат.
- 4) (2568) Одна арка циклоиды $x = a(t \sin t), \quad y = a(1 \cos t), \quad a > 0$, вращается вокруг своего основания. Вычислить объем тела, ограниченного полученной поверхностью.

Ответы: 1)
$$2\pi$$
; 2) $\frac{3\pi}{10}$; 3) $\frac{8\pi}{3}$; 4) $5\pi^2 a^3$.

- 3. Площадь поверхности вращения:
- 1) (2594) Найти площадь поверхности, образованной вращением параболы $y^2 = 4ax$ вокруг оси абсцисс от вершины до точки с абсциссой x = 3a, a > 0.
- 2) (2603) Найти площадь поверхности, образованной вращением астроиды $x = a \cos^3 t$, $y = a \sin^3 t$, a > 0, вокруг оси абсцисс.

19

Ответы: 1) $\frac{56}{3}\pi a^2$; 2) $\frac{12}{5}\pi a^2$.

Домашнее задание

- 1. Длина линии:
- 1) (2521) Найти длину дуги линии $y = \ln x$ (от $x_1 = \sqrt{3}$ до $x_2 = \sqrt{8}$).
- 2) (2543) Найти длину дуги архимедовой спирали $\rho = a \, \phi$ от начала до конца первого витка.

Ответы: 1)
$$1 + \frac{1}{2} \ln \frac{3}{2}$$
; 2) $\pi a \sqrt{1 + 4\pi^2} + \frac{a}{2} \ln \left(2\pi + \sqrt{1 + 4\pi^2} \right)$.

- 2. Объем тела вращения:
- 1) (2558) Фигура, ограниченная гиперболой $x^2 y^2 = a^2$ и прямой x = a + h (a > 0, h > 0), вращается вокруг оси абсцисс. Найти объем тела вращения.
- 2) (2560) Цепная линия $y = \frac{1}{2}(e^x + e^{-x})$ вращается вокруг оси абсцисс. При этом получается поверхность, называемая катеноидом. Найти объем тела, ограниченного катеноидом и двумя плоскостями, отстоящими от начала на a и b (b > a > 0) единиц и перпендикулярными к оси абсцисс.
- 3) (2570) Найти объем тела, полученного при вращении астроиды $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$, a>0 , вокруг своей оси симметрии.

Ответы: 1)
$$\frac{\pi h^2}{3}(3a+h)$$
; 2) $\frac{\pi}{4} \left[\frac{e^{2b}-e^{-2b}}{2} - \frac{e^{2a}-e^{-2a}}{2} + 2(b-a) \right]$;

3)
$$\frac{32}{105}\pi a^3$$
.

- 3. Площадь поверхности вращения:
- 1) (2595) Вычислить площадь поверхности, образованной вращением кубической параболы $3y-x^3=0$ вокруг оси абсцисс (от $x_1=0$ до $x_2=a$, a>0).
- 2) (2604) Арка циклоиды $x = a(t \sin t)$, $y = a(1 \cos t)$, a > 0 вращается вокруг своей оси симметрии. Найти площадь, получающейся при этом поверхности.

Ответы: 1)
$$\frac{\pi}{9} \left(\sqrt{1+a^4} - 1 \right)$$
; 2) $8\pi a^2 \left(\pi - \frac{4}{3} \right)$.

Занятие 12. Двойной интеграл. Перемена порядка интегрирования

Аудиторное задание

1. Вычислить двойной интеграл:

(3478)
$$\iint_{D} e^{x+y} dx dy, \quad D: 0 \le x \le 1, 0 \le y \le 1.$$

Ответ: $(e-1)^2$

2. Найти пределы двукратного интеграла $\iint_{D} f(x,y) dx dy$ при данных

(конечных) областях интегрирования D:

- 1) (3486) Треугольник со сторонами x = 0, y = 0, x + y = 2;
- 2) (3488) $x + y \le 1, x y \le 1, x \ge 0$;
- 3) $(3491) (x-2)^2 + (y-3)^2 \le 4$;
- 4) (3495) $y-2x \le 0, 2y-x \ge 0, xy \le 2$.

1) (3500)
$$\int_{0}^{r} dx \int_{x}^{\sqrt{2rx-x^{2}}} f(x,y) dy ; 2) (3503) \int_{0}^{2} dx \int_{2x}^{6-x} f(x,y) dy ;$$
3) (3504(2))
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x,y) dy + \int_{1}^{3} dx \int_{0}^{(3-x)/2} f(x,y) dy .$$

3) (3504(2))
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x, y) dy + \int_{1}^{3} dx \int_{0}^{(3-x)/2} f(x, y) dy$$

Домашнее задание

1. Вычислить двойной интеграл:

(3479)
$$\iint_{D} \frac{x^2}{1+y^2} dx dy , D: 0 \le x \le 1, 0 \le y \le 1 .$$

Ответ: $\pi/12$.

2. Найти пределы двукратного интеграла $\iint f(x,y) dx dy$ при данных (конечных) областях интегрирования D:

1) (3487)
$$x^2 + y^2 \le 1, x \ge 0, y \ge 0$$
;

2) (3492)
$$D$$
 ограничена параболами $y = x^2$ и $y = \sqrt{x}$;

3) (3493) Треугольник со сторонами
$$y = x$$
, $y = 2x$, $x + y = 6$.

3. Изменить порядок интегрирования.

1) (3498)
$$\int_{0}^{1} dy \int_{y}^{\sqrt{y}} f(x,y) dx \; ; \; 2) (3502) \int_{1}^{2} dx \int_{x}^{2x} f(x,y) dy \; ;$$
3) (3504(1))
$$\int_{0}^{1} dx \int_{0}^{x} f(x,y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x,y) dy \; .$$

3) (3504(1))
$$\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x, y) dy.$$

Занятие 13. Вычисление двойных интегралов. Двойной интеграл в полярной системе координат

Аудиторное задание

1. Вычислить двойной интеграл:

(3509)
$$\iint_{D} \frac{x^2}{y^2} dx dy$$
, D – область, ограниченная прямыми $x = 2$,

y = x и гиперболой xy = 1.

Ответ: 9/4.

2. Перейти в двойном интеграле $\iint f(x,y)dxdy$ к полярным

координатам ρ и ϕ $(x = \rho \cos \phi, y = \rho \sin \phi)$, и расставить пределы интегрирования.

1)
$$(3525(3))$$
 $D - \text{круг}$: $x^2 + y^2 \le by, b > 0$;

2) (3529) D — меньший из двух сегментов, на которые прямая x + y = 2рассекает круг $x^2 + y^2 \le 4$;

22

- 3) (3530) D внутренняя часть правой петли лемнискаты Бернулли $(x^2 + y^2)^2 = a^2(x^2 - y^2)$, a > 0.
- 3. Преобразовать двойные интегралы к полярным координатам:

1) (3533)
$$\int_{R/2}^{2R} dy \int_{0}^{\sqrt{2Ry-y^2}} f(x,y)dx \; ; \; 2) (3534) \int_{0}^{R} dx \int_{0}^{\sqrt{R^2-x^2}} f(x^2+y^2)dy \; .$$

4. Вычислить двойной интеграл с помощью перехода к полярным координатам:

(3537)
$$\iint\limits_{D} \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} \, dx \, dy$$
, где область D определяется

неравенствами $x^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$.

Ответ: $\pi(\pi - 2)/8$.

Домашнее задание

1. Вычислить двойной интеграл:

(3510)
$$\iint_{D} \cos(x+y) dx dy, D - \text{область, ограниченная прямыми}$$

$$x = 0$$
, $y = \pi$ и $y = x$.

Ответ: -2.

2. Перейти в двойном интеграле $\iint_D f(x,y) dx dy$ к полярным

координатам ρ и ϕ ($x = \rho \cos \phi$, $y = \rho \sin \phi$), и расставить пределы интегрирования:

- 1) (3525(2)) D круг: $x^2 + y^2 \le ax$, a > 0.
- 2) (3527) D- область, являющаяся общей частью двух кругов $x^2+y^2 \le ax$ и $x^2+y^2 \le by$, a>0, b>0 .
- 3) (3528) $\,D\,-\,$ область, ограниченная прямыми $\,y=x,\,\,y=0\,\,$ и $\,x=1\,$.
- 3. Преобразовать двойной интеграл к полярным координатам:

(3532)
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^{2}-x^{2}}} f(x,y)dy.$$

4. Вычислить двойной интеграл с помощью перехода к полярным координатам:

23

(3539)
$$\iint_{D} \sqrt{R^2 - x^2 - y^2} \, dx \, dy , \text{ где } D - \text{круг } x^2 + y^2 \le Rx .$$

OTBET:
$$\frac{R^3}{3}\left(\pi - \frac{4}{3}\right)$$
.

Занятие 14. Применение двойных интегралов. Тройной интеграл

Аудиторное задание

- 1. Найти двойным интегрированием площади указанных областей:
- 1) (3598) Области, ограниченной прямыми y = x, y = 5x, x = 1.
- 2) (3601) Области, ограниченной параболами $y = \sqrt{x}$, $y = 2\sqrt{x}$ и прямой x = 4.

Ответы: 1) 2; 2) 16/3.

- 2. Найти двойным интегрированием объемы тел, ограниченных данными поверхностями:
- 1) (3559) Плоскостями координат, плоскостями x = 4, y = 4 и параболоидом вращения $z = x^2 + y^2 + 1$.
- 2) (3565) Цилиндрами $y = \sqrt{x}$, $y = 2\sqrt{x}$ и плоскостями z = 0, x + z = 6 .

Ответы: 1) $186\frac{2}{3}$; 2) $\frac{48}{5}\sqrt{6}$.

- 3. Площадь поверхности.
- (3626) Вычислить площадь той части плоскости 6x + 3y + 2z = 12, которая заключена в первом октанте.

Ответ: 14.

4. Вычислить тройные интегралы:

1) (3520)
$$\int_{0}^{a} dx \int_{0}^{x} dy \int_{0}^{xy} x^{3} y^{3} z dz \; ; \; 2) (3522) \; \iiint_{\Omega} \frac{dx \, dy \, dz}{(x+y+z+1)^{3}} \; , \; \Omega -$$

область, ограниченная плоскостями x = 0, y = 0, z = 0, x + y + z = 1.

Ответы: 1) $a^{12}/144$; 2) $\frac{1}{2} \left(\ln 2 - \frac{5}{8} \right)$.

Домашнее задание

- 1. Найти двойным интегрированием площади указанных областей:
- 1) (3597) Области, ограниченной прямыми x = 0, y = 0, x + y = 1.
- 2) (3600) Области, заключенной между параболой $y^2 = \frac{b^2}{a}x$ и

прямой $y = \frac{b}{a}x$, a > 0, b > 0.

Ответы: 1) 1/2; 2) аb/6.

- 2. Найти двойным интегрированием объемы тел, ограниченных данными поверхностями:
- 1) (3564) Параболоидом вращения $z = x^2 + y^2$ и плоскостями z = 0, y = 1, y = 2x, y = 6 x.
- 2) (3567) Цилиндром $z=9-y^2$, координатными плоскостями и плоскостью 3x+4y=12 $(y\geq 0)$.

Ответы: 1) $78\frac{15}{32}$; 2) 45.

3. Площадь поверхности.

(3634) Части $2z = x^2 + y^2$, вырезанной цилиндром $x^2 + y^2 = 1$.

Ответ: $\frac{2\pi}{3} (\sqrt{8} - 1)$.

4. Вычислить тройные интегралы:

1) (3518) $\int_{0}^{a} dx \int_{0}^{b} dy \int_{0}^{c} (x+y+z)dz \; ; \; 2) (3524) \iiint_{\Omega} y \cos(z+x) dx dy dz \; ,$

 Ω – область, ограниченная цилиндром $y = \sqrt{x}$ и плоскостями

$$y = 0$$
, $z = 0$, $x + z = \frac{\pi}{2}$.

Ответы: 1) abc(a+b+c)/2; 2) $\pi^2/16-1/2$.

Занятие 15. Криволинейные интегралы по координатам и длине

Аудиторное задание

1. Вычислить криволинейные интегралы:

1) (3770)
$$\int_{L} \frac{ds}{x-y}$$
 , где $L-$ отрезок прямой $y=\frac{1}{2}x-2$, заключенный

между точками A(0,-2) и B(4,0).

2) (3775)
$$\int_{L} \sqrt{2y} \, ds$$
 , где L – первая арка циклоиды $x = a(t - \sin t)$,

$$y = a(1 - \cos t) , a > 0 .$$

3) (3780)
$$\int_{L} \frac{z^2 ds}{x^2 + y^2}$$
, где L – первый виток винтовой линии $x = a \cos t$,

$$y = a \sin t$$
, $z = at$, $a > 0$.

4) (3806)
$$\int_L x \, dy$$
 , где L — контур треугольника, образованного осями

координат и прямой $\frac{x}{2} + \frac{y}{3} = 1$, в положительном направлении (т.е. против движения часовой стрелки).

5) (3809)
$$\int_{L} (x^2 + y^2) dy$$
 , где L – контур четырехугольника с вершинами

(указанными в порядке обхода) в точках A(0,0), B(2,0), C(4,4) и D(0,4).

6) (3814)
$$\int_{L} y \, dx - x \, dy$$
, где L – эллипс $x = a \cos t$, $y = b \sin t$, $a > 0, b > 0$,

пробегаемый в положительном направлении.

Ответы: 1)
$$\sqrt{5} \ln 2$$
 ; 2) $4\pi a \sqrt{a}$; 3) $8\pi a^3 \sqrt{2}/3$; 4) 3 ; 5) $37\frac{1}{3}$; 6) $-2\pi ab$.

2. (3824) Вычислить двумя способами интеграл
$$\int_L (1-x^2)y \, dx + x(1+y^2) dy$$
,

если контуром интегрирования L служит окружность $x^2 + y^2 = R^2$:

1) непосредственно; 2) с помощью формулы Грина.

Ответ: $\pi R^4/2$.

3. Проверить, что интеграл, взятый по замкнутому контуру, равен нулю

26

независимо от вида функции, входящей в подынтегральное выражение.

(3832)
$$\int_{I} f(x,y)(y \, dx + x \, dy) \ .$$

Домашнее задание

- 1. Вычислить криволинейные интегралы:
- 1) (3771) $\int xy \, ds$, где L контур прямоугольника с вершинами A(0,0) , B(4,0), C(4,2), D(0,2).

2) (3773)
$$\int (x^2 + y^2)^n ds$$
, где $L - \text{окружность } x = a \cos t$, $y = a \sin t$.

2) (3773)
$$\int_{L} (x^2 + y^2)^n ds$$
, где L – окружность $x = a \cos t$, $y = a \sin t$.
3) (3782) $\int_{L} (2z - \sqrt{x^2 + y^2}) ds$, где L – первый виток конической винтовой

линии $x = t \cos t$, $y = t \sin t$, z = t.

4) (3808)
$$\int_{L} (x^2 - y^2) dx$$
, где L – дуга параболы $y = x^2$ от точки (0,0) до точки (2,4).

точки (2,4).
5) (3813)
$$\int_{L} y \, dx + x \, dy$$
, где L – четверть окружности $x = R \cos t$, $y = R \sin t$

от
$$t_1 = 0$$
 до $t_2 = \frac{\pi}{2}$.

6) (3815)
$$\int_{L} \frac{y^2 dx - x^2 dy}{x^2 + y^2}$$
, где L – полуокружность $x = a \cos t$, $y = a \sin t$ от $t_1 = 0$ до $t_2 = \pi$.

Ответы: 1) 24; 2)
$$2\pi a^{2n+1}$$
; 3) $\frac{2\sqrt{2}}{3} \left[\left(1 + 2\pi^2 \right)^{3/2} - 1 \right]$; 4) $-56/15$; 5) 0; 6) $-4a/3$.

2. (3825(2)) Вычислить
$$\int_{L} (xy+x+y)dx + (xy+x-y)dy$$
, где $L-$

окружность $x^2 + y^2 = ax$. Интегрирование ведется в положительном направлении. Вычислить двумя способами: 1) непосредственно; 2) с помощью формулы Грина.

Ответ: $-\pi a^3 / 8$.

3. Проверить, что интеграл, взятый по замкнутому контуру, равен нулю независимо от вида функции, входящей в подынтегральное выражение.

(3833)
$$\int_{L} f\left(\frac{y}{x}\right) \frac{x \, dy - y \, dx}{x^2} .$$

Занятие 16. Защита РГР «Определенный интеграл и его приложения. Двойные интегралы. Криволинейные интегралы».

ЛИТЕРАТУРА

1. Берман Г.Н. Сборник задач по курсу математического анализа: учебн. пособ. – 22-е изд., перераб. – СПб.: Изд-во «Профессия», 2001. – 432 с.

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ, НЕОПРЕДЕЛЕННЫЕ, ОПРЕДЕЛЕННЫЕ, КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Задания по курсу высшей математики для практических занятий студентам 1 курса дневного отделения (бакалавриат), направлений подготовки 051000 — Профессиональное обучение, 080200 — Менеджмент, 190100 — Наземные транспортнотехнологические комплексы, 190700 — Технология транспортных процессов, 230400 — Информационные системы и технологии, 270800 — Строительство, 280700 — Техносферная безопасность

Составители: Лабуткин А.Г., Деревенский В.П.