МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Казанский государственный архитектурно-строительный университет

Кафедра оснований, фундаментов, динамики сооружений и инженерной геологии

МЕХАНИКА ГРУНТОВ

Учебно-методическое пособие к практическим занятиям для студентов очной и заочной форм обучения по направлению 08.03.01 «Строительство»

УДК 624.15, ББК 38.58, ISBN 5-7829-0058-X

Механика грунтов. Учебно-методическое пособие к практическим занятиям для студентов очной и заочной формы обучения по направлению 08.03.01 Строительство / Сост. И.Т.Мирсаяпов, Р.Р.Хасанов, Д.Р.Сафин. - Казань: КГАСУ, 2015. - 16c.

В методических указаниях даны задания и примеры решения задач по механике грунтов.

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета.

Рецензент: директор ООО «НПСФ «Фундаментспецремонт», кандидат технических наук **И.Ф.Шакиров**

- © Казанский государственный архитектурностроительный университет, 2015
- © Мирсаяпов И.Т., Хасанов Р.Р., Сафин Д.Р., 2015

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. ЗАДАЧА №1. Определение напряжений в массиве грунта от совместного действия сосредоточенных сил	5
3. ЗАДАЧА №2. Определение напряжений в массиве грунта от действия распределенной нагрузки в условиях плоской задачи	7
СПИСОК ЛИТЕРАТУРЫ	11
ПРИЛОЖЕНИЕ 1. Исходные данные	12
ПРИЛОЖЕНИЕ 2. Справочные таблицы	14

ВВЕДЕНИЕ

Механика грунтов является теоретической базой фундаментостроения. Применение положений современной механики грунтов в проектной и производственной практике позволяет более полно использовать несущую способность оснований, выбирать наиболее экономичные и рациональные способы возведения фундаментов зданий и инженерных сооружений с учетом инженерно-геологической обстановки.

Одновременно с изучением программного теоретического материала учебный план предусматривает практические занятия. Практические занятия являются одним из ответственных звеньев учебного процесса и имеют целью закрепить знания, полученные студентами за период изучения теоретического курса, а также должно способствовать умелому применению этих знаний при инженерном решении задач теории механики грунтов. В процессе решения задач студент должен научиться пользоваться действующими строительными нормами и правилами, руководствами, справочными и литературными материалами.

Решению задач должно предшествовать изучение соответствующих разделов курса «Инженерная геология, механика грунтов и фундаменты». При выполнении работы рекомендуется пользоваться литературой, приведенной в конце методических указаний.

1. ЗАДАЧА №1

Определение напряжений в массиве грунта от совместного действия сосредоточенных сил

Условия задачи. К горизонтальной поверхности массива грунта в одном створе приложены три вертикальные сосредоточенные силы N_1 , N_2 , N_3 , расстояние между осями действия сил L_1 и L_2 .

Определить величины вертикальных составляющих напряжений σ_z от совместного действия сосредоточенных сил в точках массива грунта, расположенных в плоскости действия сил:

- а) по вертикали I-I, проходящей через точку приложения силы N_2 ;
- б) по горизонтали ІІ-ІІ, проходящей на расстоянии d от поверхности массива грунта.

Точки по вертикали расположить от поверхности на расстоянии 1,0; 2,0; 4,0 и 6,0 м. Точки по горизонтали расположить вправо и влево от оси действия силы N_2 на расстоянии 0; 1,0 и 3,0 м. По вычисленным напряжениям и заданным осям построить эпюры распределения напряжений σ_z . Исходные данные приведены в табл. П1.1 приложения 1. Схема к задаче представлена на рис. 1.

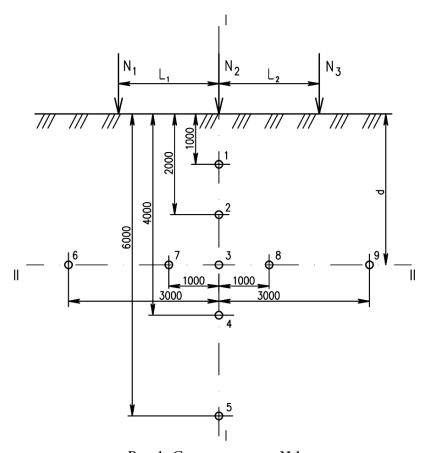


Рис.1. Схема к задаче №1

Указания к решению. Для случая, когда к горизонтальной поверхности массива грунта приложено несколько сосредоточенных сил $N_1, N_2, N_3...N_n$, величины вертикальных составляющих напряжений σ_z в любой точке массива грунта можно определить суммированием составляющих напряжений от действия каждой силы в отдельности с использованием зависимости:

$$\sigma_{zi} = \frac{\sum_{i=1}^{n} k_i N_i}{z_i^2},\tag{1}$$

где k_i – коэффициент, являющийся функцией отношения r_i / z_i ;

 r_i — расстояние по горизонтальной оси от рассматриваемой точки до оси z, проходящей через точку приложения сосредоточенной силы N_i ;

 z_i- глубина рассматриваемой точки от плоскости приложения сосредоточенной силы $N_i\,.$

Значения коэффициента k приведены в табл. П2.1 приложения 2.

При построении расчетной схемы и эпюр напряжений следует принимать масштаб расстояний 1:50, масштаб напряжений 50 кПа в 1 см.

Пример расчета.

Дано:

$$N_1=1100$$
кH, $N_2=700$ кH, $N_3=1800$ кH, $L_1=2$,0м, $L_2=3$,0м, $d=3$,0м. Напряжения в заданных точках определяем по формуле:

$$\sigma_{zi} = k_1 \frac{N_1}{z_i^2} + k_2 \frac{N_2}{z_i^2} + k_3 \frac{N_3}{z_i^2}$$
, кПа.

Для удобства расчетов все вычисления ведем в табличной форме (табл. 1).

Таблица 1

N_0N_0	z,	Λ	$V_{I}=1100$	ОкН		<i>N</i> ₂ =700кН			<i>N</i> ₂ =1800кН				
точек	M	r_1 , M	r_1/z	k_1	<i>r</i> ₂ , M	r_2/z	k_2	<i>r</i> ₃ ,M	r_3/z	k_3	σ_{zi} , кПа		
По вертикали (сечение I-I)													
1	1,0	2,0	2,0	0,0085	0	0	0,4775	3,0	3,0	0,0015	346		
2	2,0	2,0	1,0	0,0844	0	0	0,4775	3,0	1,5	0,0251	118		
3	3,0	2,0	0,67	0,1889	0	0	0,4775	3,0	1,0	0,0844	77		
4	4,0	2,0	0,5	0,2733	0	0	0,4775	3,0	0,75	0,1565	57		
5	6,0	2,0	0,33	0,3687	0	0	0,4775	3,0	0,5	0,2733	34		
				По гор	изонта	ли (сеч	ение II- I	()					
6	3,0	1,0	0,33	0,3687	3,0	1,0	0,0844	6,0	2,0	0,0085	53		
7	3,0	1,0	0,33	0,3687	1,0	0,33	0,3687	4,0	1,33	0,0374	81		
3	3,0	2,0	0,67	0,1889	0	0	0,4775	3,0	1,0	0,0844	77		
8	3,0	3,0	1,0	0,0844	1,0	0,33	0,3687	2,0	0,67	0,1889	77		
9	3,0	5,0	1,67	0,0171	3,0	1,0	0,0844	0	0	0,4775	104		

По полученным в соответствующих точках значениям напряжений строим эпюры распределения напряжений по вертикали и горизонтали (рис. 2).

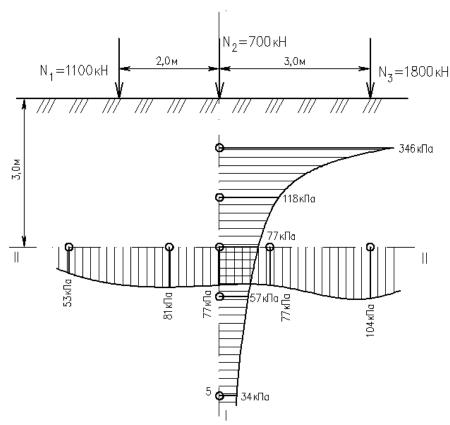


Рис.2. Эпюры распределения напряжений (к задаче №1)

2. ЗАДАЧА №2

Определение напряжений в массиве грунта от действия распределенной нагрузки в условиях плоской задачи

Условия задачи. К горизонтальной поверхности массива грунта приложена вертикальная неравномерная нагрузка, распределенная в пределах гибкой полосы шириной b по закону трапеции от p_1 до p_2 .

Определить величины вертикальных составляющих напряжений σ_z в точках массива грунта для заданной вертикали, проходящей через одну из точек $M_1,\,M_2,\,M_3,\,M_4,\,M_5$ загруженной полосы, и горизонтали, расположенной на расстоянии z от поверхности. Точки по вертикали расположить от поверхности на расстоянии $1,0;\,2,0;\,4,0$ и 6,0 м. Точки по горизонтали расположить вправо и влево от середины загруженной полосы на расстоянии $0;\,1,0$ и 3,0 м. По вычисленным напряжениям построить эпюры распределения напряжений σ_z . Исходные данные приведены в табл. $\Pi 1.2$. Схема к задаче представлена на рис. 3.

Указания к решению. Для случая действия на поверхности массива грунта нагрузки, распределенной в пределах гибкой полосы по трапеце-

идальной эпюре, величину вертикального сжимающего напряжения в заданной точке массива грунта определяют путем суммирования напряжений от прямоугольного и треугольного элементов эпюры внешней нагрузки.

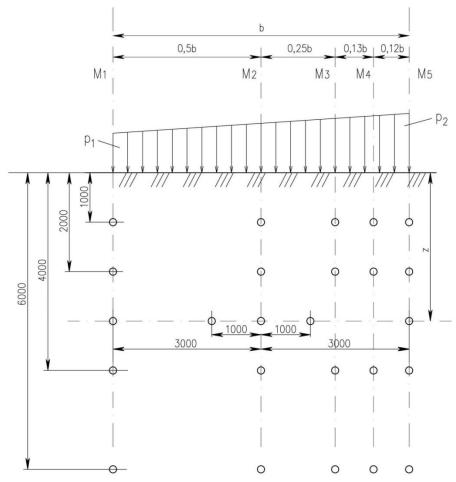


Рис.3. Схема к задаче №3

Вертикальные напряжения σ_z , возникающие от действия полосообразной равномерно распределенной нагрузки (прямоугольный элемент эпюры внешней нагрузки), определяют по формуле:

$$\sigma_z = k_z \cdot p \,, \tag{2}$$

где k_z — коэффициент, определяемый в зависимости от величины относительных координат z/b и y/b по табл. П2.2.1 настоящих методических указаний;

p — вертикальная равномерно распределенная нагрузка.

Вертикальные напряжения σ_z , возникающие от действия полосообразной неравномерной нагрузки, распределенной по закону треугольника (треугольный элемент эпюры внешней нагрузки), определяются по формуле:

$$\sigma_z' = k_z' \cdot p', \tag{3}$$

где k_z' - коэффициент, определяемый в зависимости от величины относительных координат z/b и y/b по табл. П2.2.2 настоящих методических указаний;

p' – наибольшая ордината треугольной нагрузки.

При построении расчетной схемы и эпюр напряжений следует принимать масштаб расстояний 1:50, масштаб напряжений 50 кПа в 1 см.

Пример расчета.

Дано:

b=6,0м, $p_1=140$ кПа, $p_2=240$ кПа, z=4,0м, расчетная вертикаль ${\rm M}_5.$

При расчете вертикальных напряжений равномерно распределенную нагрузку принимаем $p=p_1=140\kappa\Pi a$, при этом наибольшая ордината треугольной нагрузки $p'=p_2-p_1=240-140=100\kappa\Pi a$.

Необходимо учесть, что начало координат для равномерно распределенной нагрузки находится в середине полосы нагружения, а начало координат для неравномерно распределенной нагрузки находится с краю полосы нагружения, где значение треугольной нагрузки равно нулю.

Вычисляем напряжения в расчетных точках по формуле:

$$\sigma_z = k_z p + k_z' p'. \tag{4}$$

Для удобства расчетов вычисления ведем в табличной форме (табл. 2).

Таблица 2

											'		
		Прямоугольная форма					Треугольная форма						
N_0N_0	3,	нагрузки						нагрузки					
745745	у,			Пигру	,,,,,,				11411	1		,	$\sum \sigma_z$,
точек	M	z/b	y/b	1,	p,	σ_z ,	y',	z://b	y'/b	k'_z	p',	σ'_z ,	кПа
		2/0	<i>y/D</i>	k_z	кПа	кПа	M	2,70	<i>y / D</i>	κ_z	кПа	кПа	
								<u> </u>				KIIa	<u> </u>
						По верт	гикали	M_5					
т.1				,									
z=z'=1	3,0	0,17	0,5	0,5		70,0	6,0	0,17	1,0	0,45		44,8	114,8
т.2	3,0	0,33	0,5	0,49		68,6	6,0	0,33	1,0	0,40		40,0	108,6
z=z'=2	3,0	0,33	0,5	0,49		00,0	0,0	0,33	1,0	0,40		40,0	108,0
т.3					140						100		
	3,0	0,67	0,5	0,46		64,4	6,0	0,67	1,0	0,31		31,0	95,4
z=z'=4	-,-	, , ,	9,0	-, -		.,.	-,-		_,,	- ,		, -	, -
т.4	2.0	1.0	٠,	0 44		1		1.0	1.0	0.05		25.0	00.4
z=z'=6	3,0	1,0	0,5	0,41		57,4	6,0	1,0	1,0	0,25		25,0	82,4
Z-Z -0													
					По	горизо	нтали	<i>z</i> =4,0м	[
т.5							_	_	_				
	3,0	0,67	0,5	0,46		64,4	0	0,67	0	0,15		15,0	79,4
z=z'=4													
т.6	1,0	0,67	0,17	0.67		02.9	2.0	0,67	0,33	0,29		20.0	122.9
z=z'=4	1,0	0,67	0,17	0,67		93,8	2,0	0,67	0,33	0,29		29,0	122,8
					140						100		
т.7	0	0,67	0	0,72		100,8	3,0	0,67	0,5	0,36		36,0	136,8
z=z'=4		5,57		,, _		100,0	2,0	5,07				20,0	123,0
т.8													
	1,0	0,67	0,17	0,67		93,8	4,0	0,67	0,67	0,39		39,0	132,8
z=z'=4													

По полученным значениям строим эпюры распределения напряжений (рис. 4).

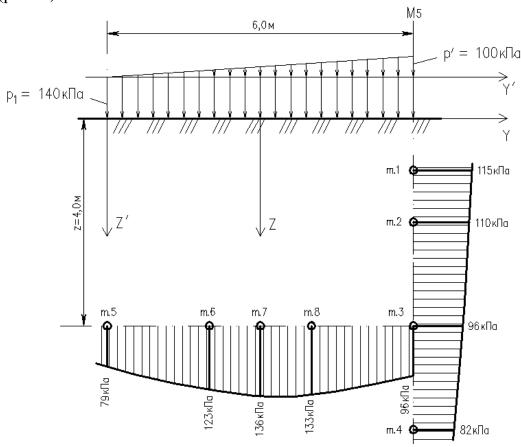


Рис. 4. Эпюра распределения напряжений (к задаче №3)

СПИСОК ЛИТЕРАТУРЫ

- 1. Малышев М.В., Болдырев Г.Г. Механика грунтов, основания и фундаменты / М.: ACB, 2009.
- 2. Мангушев Р.А., Карлов В.Д., Сахаров И.И. Механика грунтов / М.: ACB, 2009. 264c.
- 3. Ухов С.Б., Семенов В.В., Знаменский В.В., Тер-Мартиросян З.Г., Чернышев С.Н. Механика грунтов, основания и фундаменты / Под ред. С.Б.Ухова. М.: Высшая школа, 2005. 528с.
- 4. Бартоломей А.А. Механика грунтов: Учебник. М.: ACB, 2003 304с.
- 5. Цытович Н.А. Механика грунтов (краткий курс). М.: Высшая школа, 1983.-288 с.
- 6. СП 22.13330.2011 Основания зданий и сооружений. Минрегион России. М.:НИИОСП им. Н.М. Герсеванова, 2011. 164с.

Приложение 1

Таблица П1.1 Исходные данные для задачи №1

			1		<u> </u>	
№ π/π	<i>N</i> ₁ , κΗ	<i>N</i> ₂ , кН	<i>N</i> ₃ , кН	L ₁ , M	<i>L</i> ₂ , м	d, M
1	1200	800	1400	1,0	2,0	3,0
2	1200	800	1200	2,0	2,0	2,5
3	1900	600	1300	3,0	1,0	2,0
4	1300	500	1500	3,0	2,0	3,0
5	1100	700	1800	2,0	3,0	2,0
6	1800	800	1600	3,0	2,0	1,5
7	1000	600	1100	1,0	1,0	2,0
8	1800	800	1400	3,0	1,0	3,0
9	1500	700	1900	2,0	3,0	2,5
10	1300	600	1300	2,0	2,0	2,0
11	1900	500	1500	3,0	2,0	1,5
12	1500	400	1200	1,0	2,0	2,5
13	1600	700	1000	3,0	1,0	2,0
14	1800	900	1700	2,0	3,0	3,0
15	2000	400	1500	2,0	3,0	3,5
16	1400	800	1400	1,0	2,0	2,5
17	1700	700	1200	3,0	2,0	3,0
18	1800	600	1600	1,0	4,0	2,0
19	1400	500	1700	1,0	3,0	1,5
20	1300	400	1400	2,0	4,0	3,0
21	1500	800	1200	3,0	2,0	3,0
22	1600	400	1300	2,0	3,0	2,5
23	1800	700	1100	3,0	2,0	3,5
24	2000	600	1500	2,0	3,0	2,0
25	1400	500	1800	3,0	2,0	3,5
26	1250	850	1425	1,2	2,5	3,5
27	1275	825	1250	2,5	2,2	2,5
28	1950	675	1350	3,8	1,3	2,8
29	1350	525	1575	3,5	2,1	3,3
30	1150	775	1825	2,3	3,5	2,5

Таблица П1.2 **Исходные данные для задачи №2**

№ п/п	<i>b</i> ,	Z,	Р ₁ , кПа	<i>P</i> ₂ , кПа	Расчетная
	M	M			вертикаль
1	3,0	1,00	120	220	M_1
2	5,0	3,00	180	280	M_2
3	4,0	2,00	220	320	M_3
4	5,0	2,00	260	360	M_4
5	6,0	4,00	140	240	M_5
6	4,0	2,00	160	260	M_5
7	6,0	3,00	240	340	M_4
8	5,0	4,00	150	250	M_3
9	4,0	2,00	130	230	M_2
10	3,0	1,00	210	310	M_1
11	3,5	2,5	190	250	M_3
12	5,0	1,5	240	340	M_5
13	6,5	3,5	210	310	M_2
14	4,0	2,0	190	270	M_1
15	7,0	4,0	310	400	M_4
16	3,0	4,5	270	390	M_4
17	5,5	2,0	170	230	M_1
18	5,0	3,5	240	290	M_3
19	4,8	5,0	270	370	M_2
20	6,4	3,5	250	310	M_1
21	5,2	2,5	320	410	M_1
22	5,0	1,0	170	260	M_5
23	3,8	4,0	140	180	M_2
24	4,6	5,5	230	330	M_4
25	5,4	3,0	260	370	M_1
26	6,4	1,5	190	240	M_4
27	3,8	2,0	290	360	M_1
28	4,2	3,5	340	420	M_3
29	5,8	4,5	170	300	M_2
30	6,6	2,5	230	370	M_5

r/z,	k	r/z	k	r/z	k	r/z	k
0,00	0,4775	0,50	0,2733	1,00	0,0844	1,50	0,0251
0,01	0,4773	0,51	0,2679	1,01	0,0823	1,51	0,0245
0,02	0,4770	0,52	0,2625	1,02	0,0803	1,52	0,0240
0,03	0,4764	0,53	0,2571	1,03	0,0783	1,53	0,0234
0,04	0,4756	0,54	0,2518	1,04	0,0764	1,54	0,0229
0,05	0,4745	0,55	0,2466	1,05	0,0744	1,55	0,0224
0,06	0,4732	0,56	0,2414	1,06	0,0727	1,56	0,0219
0,07	0,4717	0,57	0,2663	1,07	0,0709	1,57	0,0214
0,08	0,4699	0,58	0,2313	1,08	0,0691	1,58	0,0209
0,09	0,4679	0,59	0,2263	1,09	0,0674	1,59	0,0204
0,10	0,4657	0,60	0,2214	1,10	0,0658	1,60	0,0200
0,11	0,4633	0,61	0,2165	1,11	0,0641	1,61	0,0195
0,12	0,4607	0,62	0,2117	1,12	0,0626	1,62	0,0191
0,13	0,4579	0,63	0,2070	1,13	0,0610	1,63	0,0187
0,14	0,4548	0,64	0,2024	1,14	0,0595	1,64	0,0183
0,15	0,4516	0,65	0,1978	1,15	0,0581	1,65	0,0179
0,16	0,4482	0,66	0,1934	1,16	0,0567	1,66	0,0175
0,17	0,4446	0,67	0,1889	1,17	0,0553	1,67	0,0171
0,18	0,4409	0,68	0,1846	1,18	0,0539	1,68	0,0167
0,19	0,4370	0,69	0,1804	1,19	0,0526	1,69	0,0163
0,20	0,4329	0,70	0,1762	1,20	0,0513	1,70	0,0160
0,21	0,4286	0,71	0,1721	1,21	0,0501	1,72	0,0153
0,22	0,4242	0,72	0,1681	1,22	0,0489	1,74	0,0147
0,23	0,4197	0,73	0,1641	1,23	0,0477	1,76	0,0141
0,24	0,4151	0,74	0,1603	1,24	0,0466	1,78	0,0135
0,25	0,4103	0,75	0,1565	1,25	0,0454	1,80	0,0129
0,26	0,4054	0,76	0,1527	1,26	0,0443	1,82	0,0124
0,27	0,4004	0,77	0,1491	1,27	0,0433	1,84	0,0119
0,28	0,3954	0,78	0,1455	1,28	0,0422	1,86	0,0114
0,29	0,3902	0,79	0,1420	1,29	0,0412	1,88	0,0109
0,30	0,3849	0,80	0,1386	1,30	0,0402	1,90	0,0105
0,31	0,3796	0,81	0,1353	1,31	0,0393	1,92	0,0101
0,32	0,3742	0,82	0,1320	1,32	0,0384	1,94	0,0097
0,33	0,3687	0,83	0,1288	1,33	0,0374	1,96	0,0093
0,34	0,3632	0,84	0,1257	1,34	0,0365	1,98	0,0089
0,35	0,3577	0,85	0,1226	1,35	0,0357	2,00	0,0085
0,36	0,3521	0,86	0,1196	1,36	0,0348	2,10	0,0070
0,37	0,3465	0,87	0,1166	1,37	0,0340	2,20	0,0058
0,38	0,3408	0,88	0,1138	1,38	0,0332	2,30	0,0048
0,39	0,3351	0,89	0,1110	1,39	0,0324	2,40	0,0040
0,40	0,3294	0,90	0,1083	1,40	0,0317	2,50	0,0034
0,41	0,3238	0,91	0,1057	1,41	0,0309	2,60	0,0029
0,42	0,3181	0,92	0,1031	1,42	0,0302	2,70	0,0024
0,43	0,3124	0,93	0,1005	1,43	0,0295	2,80	0,0021
0,44	0,3068	0,94	0,0981	1,44	0,0288	2,90	0,0017
0,45	0,3011	0,95	0,0956	1,45	0,0282	3,00	0,0015
0,46	0,2955	0,96	0,0933	1,46	0,0275	3,50	0,0007
0,47	0,2899	0,97	0,0910	1,47	0,0269	4,00	0,0004
0,48	0,2843	0,98	0,0887	1,48	0,0263	4,50	0,0002
0,49	0,2788	0,99	0,0865	1,49	0,0257	5,00	0,0001

Таблица П2.2.1 Значения коэффициента k_z для определения напряжений в случае действия равномерно распределенной нагрузки в условиях плоской задачи

а	Значения у/b									
z/b	0,00	0,25	0,50	1,00	1,50	2,00				
0,00	1,00	1,00	0,50	0,00	0,00	0,00				
0,25	0,96	0,90	0,50	0,02	0,00	0,00				
0,50	0,82	0,74	0,48	0,08	0,02	0,00				
0,75	0,67	0,61	0,45	0,15	0,04	0,02				
1,00	0,55	0,51	0,41	0,19	0,07	0,03				
1,25	0,46	0,44	0,37	0,20	0,10	0,04				
1,50	0,40	0,38	0,33	0,21	0,13	0,07				
1,75	0,35	0,34	0,30	0,20	0,14	0,08				
2,00	0,31	0,31	0,28	0,17	0,13	0,10				
3,00	0,21	0,21	0,20	0,14	0,12	0,10				
4,00	0,16	0,16	0,15	0,12	0,11	0,09				
5,00	0,13	0,13	0,12	0,10	0,10	-				
6,00	0,11	0,10	0,10	-	-	-				

Таблица П2.2.2 Значения коэффициента k_z' для определения величины сжимающих напряжений при треугольной нагрузке

- /l-	Значения у/b										
z/b	-1,50	-1,00	-0,50	0,00	0,25	0,50	0,75	1,00	1,50	2,00	2,50
0,00	0,000	0,000	0,000	0,000	0,250	0,500	0,750	0,500	0,000	0,000	0,000
0,25	0,000	0,000	0,001	0,075	0,256	0,480	0,643	0,424	0,015	0,003	0,000
0,50	0,002	0,003	0,023	0,127	0,263	0,410	0,477	0,353	0,056	0,017	0,003
0,75	0,006	0,016	0,042	0,153	0,248	0,335	0,361	0,293	0,108	0,024	0,009
1,00	0,014	0,025	0,061	0,159	0,223	0,275	0,279	0,241	0,129	0,045	0,013
1,50	0,020	0,048	0,096	0,145	0,178	0,200	0,202	0,185	0,124	0,062	0,041
2,00	0,033	0,061	0,092	0,127	0,146	0,155	0,163	0,153	0,108	0,069	0,050
3,00	0,050	0,064	0,080	0,096	0,103	0,104	0,108	0,104	0,090	0,071	0,050
4,00	0,051	0,060	0,067	0,075	0,078	0,085	0,082	0,075	0,073	0,060	0,049
5,00	0,047	0,052	0,057	0,059	0,062	0,063	0,063	0,065	0,061	0,051	0,047
6,00	0,041	0,041	0,050	0,051	0,052	0,053	0,053	0,053	0,050	0,050	0,045

МЕХАНИКА ГРУНТОВ

Учебно-методическое пособие к практическим занятиям для студентов очной и заочной форм обучения по направлению 08.03.01 «Строительство»

Илизар Талгатович МИРСАЯПОВ

Рубис Раисович ХАСАНОВ

Даниль Ринафович САФИН

Редакционно-издательский отдел Казанский государственный архитектурно-строительный университет

Подписано в печать

Заказ № Бумага тип **№**1 Печать офсетная Тираж 50 экз.

Усл.-печ.л. Учетн.-изд.л.

Формат 60×84/16

Печатно-множительный отдел КГАСУ 420043, Казань, Зеленая, 1