ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра строительных материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к лабораторным работам по дисциплине "Химия цемента"

Рецензент

Доцент Казанского государственного архитектурно-строительного университета, канд.техн. наук В.И. Санникова

С 28 Методические указания к лабораторным работам по дисциплине «Химия цемента». –Казань: КГАСУ, 2007. –16 с.

Настоящие методические указания переработаны и дополнены в соответствии с учебным планом для специальности 2906, утвержденным ученым советом университета.

Табл. 3, илл. 1, библиогр.: 4 назв.

© Казанский государственный архитектурно-строительный университет, 2007

РАБОТА 1

ВЛИЯНИЕ ДИСПЕРСНОСТИ ПОРТЛАНДЦЕМЕНТА НА ЕГО СВОЙСТВА

Многие свойства вяжущих, в том числе прочность, скорость твердения, стойкость в различных условиях и др. определяются не только их химическим и минеральным составом, наличием тех или иных добавок, но и степенью измельчения вяжущего, его зерновым составом и формой частичек порошка.

Увеличение тонкости помола портландцемента до определенного предела (до величины удельной поверхности $500-600 \text{ m}^2/\text{кг}$) повышает его прочность и скорость твердения. Но увеличение удельной поверхности цемента положительно сказывается на прочности его камня только до определенного значения. При большей удельной поверхности цемента (более $500-600 \text{ m}^2/\text{кг}$) водопотребность его резко возрастает, содержание избыточной воды в тесте повышается, возрастает пористость цементного камня и соответственно снижается его прочность.

1.1. Цель работы

Путем испытания цементов различной степени измельчения установить, характер зависимости физико-механических свойств цемента от тонкости его помола.

1.2. Содержание работы

В работе необходимо установить влияние тонкости помола цемента на водопотребность (нормальную густоту), сроки схватывания цементного теста, прочность и кинетику твердения цементных образцов.

Для исследований используется портландцемент одного и того же минералогического состава при величине удельной поверхности от 250 до 500 ${\rm m}^2/{\rm kr}$.

Каждое звено студентов работает с портландцементом определенной дисперсности, значение которой, кроме величины удельной поверхности, дополняется данными ситового анализа. Для этого определяют тонкость помола цемента и величину удельной поверхности (методом воздухопроницаемости). У цементов определяют также нормальную густоту теста и сроки схватывания. Для изучения кинетики твердения и определения прочности из них изготавливают по 12 образцов-кубиков размером 20х20х20 мм из теста нормальной густоты.

Образцы выдерживают 24 часа в формах в ванне с гидравлическим затвором, затем расформовывают и хранят в ванне с водой. Испытывают образцы в возрасте 3, 7 и 14 суток (по 4 образца на каждое испытание).

Полученные данные по испытанию цементов, имеющих различную величину удельной поверхности, сводят в общую таблицу. Используя данные сводной таблицы, необходимо построить графики, показывающие зависимость свойств цементов от степени измельчения вяжущего, характеризуемой удельной поверхностью.

В конце работы делаются выводы относительно полученных результатов.

1.3. Оборудование и материалы

Определение тонкости помола цемента производят при помощи ситового анализа в соответствии с ГОСТом 310.2-81 "Цементы. Методы определения тонкости помола". Для этого используют сито с размером ячейки 0,08 мм.

Определение удельной поверхности производится методом воздухопроницаемости на приборе ПСХ-2 в соответствии с прилагаемой к прибору инструкцией.

Для определения нормальной густоты и сроков схватывания цементного теста используется прибор Вика с иглой и пестиком, описанный в п. 1.1.1. ГОСТа 310.3-81 "Цементы. Методы определения нормальной густоты, сроков схватывания и равномерности изменения объема".

Для изготовления образцов-кубиков применяют разъемные формы размером 20x20x20 мм.

Испытание образцов на сжатие производится на прессе с предельной нагрузкой 10 т.

Для выполнения работы необходимы следующие материалы: портландцементы одинакового минералогического состава с различной удельной поверхностью) $250 \text{ m}^2/\text{kr}$, $350 \text{ m}^2/\text{kr}$.

1.4. Определение тонкости помола цемента

Пробу цемента высушивают в сушильном шкафу при температуре 105-110 °C в течение 2 ч и охлаждают в эксикаторе. Смешивают 50 г цемента с точностью до 0,01 ε и высыпают его на сито. Закрыв сито крышкой, ε устанавливают в прибор для механического просеивания. Через 5-7 мин от начала просеивания останавливают прибор, осторожно снимают донышко и высыпают из него прошедший через сито цемент, прочищают сетку с нижней стороны мягкой кистью, вставляют донышко и продолжают просеивание.

При отсутствии в лаборатории прибора для механического просеивания допускается производить ручное просеивание.

Операцию просеивания считают законченной, если при контрольном просеивании сквозь сито проходит не более 0,05 г цемента. Контрольное просеивание выполняют вручную при снятом донышке на бумагу в течение одной минуты.

Тонкость помола цемента определяют как остаток на сите с сеткой 008 в процентах к первоначальной массе просеиваемой пробы с точностью до 0,1 %.

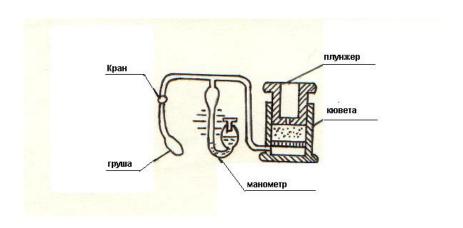


Рис. Принципиальная схема прибора ПСХ-2

Прибор предназначен для определения тонкости помола по величине удельной поверхности и пригоден для исследования материалов, перечисленных в табл. 1 "Приложение к инструкции прибора ПСХ-2".

Принцип действия прибора основан на зависимости воздухопроницаемости слоя порошка от величины его удельной поверхности. Удельной поверхностью называется поверхность, которой обладает 1 г зерен материала.

Схема прибора представлена на рисунке. Прибор состоит из кюветы, плунжера, манометра, крана, резиновой груши и соединительных трубок. Стеклянные части прибора смонтированы на панели, прикрепленной к внутренней стенке футляра.

Кювета предназначена для укладки в ней слоя испытываемого материала. Она представляет собой металлическую камеру, перегороженную на некоторой высоте диском с высверленным в нем отверстием. Часть камеры, ограниченная диском и дном кюветы, с помощью штуцера и гибкой резиновой трубки присоединяется к жидкостному манометру. На внешней поверхности кюветы нанесена миллиметровая шкала.

Плунжер, посредством которого производится уплотнение материала в кювете, выполнен в виде цилиндра с упорным диском. В теле плунжера просверлен канал и отверстия для прохождения воздуха, цилиндр подогнан к кювете с просветом 0,15 мм. К вырезу упорного диска прикреплена планка с

нониусом, которая вместе со шкалой на внешний поверхности кюветы позволяет измерять толщину испытываемого материала.

Резиновая груша с клапанами служит для создания разрежения под слоем материала.

Манометр предназначен для определения давления воздуха под слоем испытываемого материала и в сочетании с секундомером используется для определения воздухопроницаемости материала. В комплект прибора входят: секундомер, аптекарские весы и разновесы на 50 г. Прибор снабжен одноколенным манометром длиной около 300 мм, заполненным подкрашенной водой.

1.5.1. Проведение анализа

Для определения величины удельной поверхности необходимо:

- высушить материал до воздушно-сухого состояния при температуре 105-110 °C;
- охладить до комнатной температуры и взвесить с точностью до 0,01 г пробу массой р = 3,33 γ г, значение которой берется из табл. 1 (плотность материала);
- положить в кювету кружок фильтровальной бумаги, вырезанной по размерам сечения кюветы и всыпать в него навеску, предназначенную для анализа, Легким постукиванием разравнять слой, покрыть его сверху также кружками фильтровальной бумаги и уплотнить плунжером при нажатии на него рукой;
- с помощью нониуса на планке плунжера и шкалы на внешней поверхности кюветы измерить высоту материала (L);
- удалить плунжер из кюветы, открыть кран и посредством груши создать разряжение под слоем материала. Это разряжение должно быть таким, чтобы жидкость в манометре поднялось до уровня верхней колбочки на трубке манометра;
- закрыть кран, измерить по секундомеру время (в секундах) прохождения мениска жидкости в манометре между двумя рисками (при быстром оседании столба между рисками 3-4, при медленном между рисками 1-2);
- записать температуру воздуха.

1.5.2. Вычисления

Для расчета величины удельной поверхности следует:

• по измеренным значениям высоты слоя (L) и температуры воздуха (T) найти величину М в табл. 2 («Приложение к инструкции прибора ПСХ-2»);

- по измеренному времени Т (с) найти значение корня квадратного из Т (табл. 3 «Приложение к инструкции прибора ПСХ-2»);
- произвести вычисления удельной поверхности по формуле

$$S = k \frac{M\sqrt{T}}{P}, cm^2/\Gamma$$

где К - постоянная прибора для той пары рисок, между которыми наблюдалось падение столба жидкости за время Т (значение К содержится в паспорте прибора);

Р - величина навески в граммах.

1.6. Определение нормальной густоты цементного теста

Нормальной густотой цементного теста считают такую консистенцию его, при которой пестик прибора Вика, погруженный в кольцо, заполненное тестом, не доходит на 5-7 мм до пластинки, на которой установлено кольцо.

Нормальную густоту теста характеризуют количеством воды затворения, выраженным в процентах от массы цемента.

Определение нормальной густоты производится в следующей последовательности. Взвешивают 300 г цемента, высыпают в чашу, предварительно протертую влажной тканью. Затем делают в цементе углубление, в которое вливают в один прием воду в количестве, необходимом (ориентировочно) для получения цементного теста нормальной густоты. Углубление засыпают цементом и через 30 с после приливания воды сначала осторожно перемешивают, а затем в течение 4, 5 мин энергично растирают тесто лопаткой. Затем в один прием наполняют кольцо прибора цементным тестом и 5-6 раз постукивают пластинкой с кольцом о твердое основание. Избыток теста срезают ножом вровень с краями кольца. Приводят пестик прибора в соприкосновение с поверхностью теста в центре кольца, освобождают стопорный винт и через 30 с с момента освобождения стержня производят отсчет погружения пестика по шкале.

1.7. Определение сроков схватывания цементного теста

Началом схватывания цементного теста считают время, прошедшее от начала затворения (момента приливания воды) до того момента, когда игла прибора Вика не доходит до пластинки на 1-2 мм. Концом схватывания цементного теста считают время от начала затворения до момента, когда игла опускается в тесто не более, чем на 1-2 мм. Определение производится в следующей последовательности: приготавливают тесто нормальной густоты (в соответствии с п. 1.6.), переносят его в кольцо прибора Вика, предварительно смазанное машинным маслом, уплотняют постукиванием о твердое основание, избыток теста срезают ножом вровень с краями кольца, иглу прибора

подводят к поверхности теста. Иглу погружают в тесто через каждые 10 мин передвигая кольцо после каждого погружения для того, чтобы игла не попадала в прежнее место. После каждого погружения иглу протирают.

1.8. Изготовление, хранение при твердении и испытание образцов

Каждое звено студентов, работающих с цементом определенной удельной поверхности, должно изготовить по 12 образцов-кубиков размером 20x20x20 мм из теста нормальной густоты. Приготовленное цементное тесто укладывают в формы и уплотняют на вибростоле в течение 1 мин.

В течение суток образцы в формах хранят в ванне с гидравлическим~ затвором, а затем расформовывают и укладывают в воду. Испытание образцов производят в соответствии с п. 1.5. настоящих указаний через 3, 7 и 14 суток с момента их изготовления.

1.9. Обработка результатов испытаний и выводы

Каждое звено записывает в лабораторном журнале следующие данные: тонкость помола цемента (остаток на сите), величину удельной поверхности, нормальную густоту, сроки схватывания цементного теста, прочность при сжатии в возрасте 3, 7 и 14 суток.

Данные всех звеньев записываются в одну сводную таблицу, анализируются, делаются выводы о влиянии дисперсности портландцемента на его свойства. На основании полученных результатов строятся графики, показывающие зависимость перечисленных свойств цемента от величины удельной поверхности.

Таблица 1

Влияние дисперсности портландцемента на его свойства

Наименование показателей	Удельная поверхность цемента			
1	2	3	4	
Тонкость помола – остаток на				
сите с сеткой № 008, %				
Нормальная густота цементного				
теста, %				
Сроки схватывания, ч-мин				
• начало схватывания				
• конец схватывания				
Прочность при сжатии в возрас-				
те, МПа:				
 3 суток; 				
 7 суток; 				
• 14 суток				

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Каков вещественный состав портландцемента и портландцемента с минеральными добавками?
- 2. Дайте характеристику основных видов сырья для получения портландцемента.
- 3. Каковы основные способы производства портландцемента? Дайте их сравнительную характеристику.
- 4. Каков минералогический состав портландцемента? Как он влияет на основные свойства вяжущего?
- 5. Прочность портландцемента. В чем различие между маркой по прочности и активностью цемента?
 - 6. Каковы характеристики дисперсности портландцемента?
- 7. Каковы определения тонкости помола, величины удельной поверхности портландцемента?
 - 8. Как влияет дисперсность портландцемента на его свойства?

ЗАДАЧИ

- 1. Подсчитать расход цемента и воды на 1 л цементного теста, если последнее содержит 12% воздуха (по объему). Нормальная густота теста -0.26, а удельная масса цемента -3.1 г/см^3 .
- 2. Определить ориентировочную прочность цементного камня через 90 суток, если через 28 суток прочность его оказалась равной 30 МПа. Какова будет прочность этого цемента через полгода и год? При вычислении прочности камня в любой срок "n" пользоваться логарифмическим законом возрастания прочности цементного камня и бетона.

$$R_n = R_{28} \frac{\lg n}{\lg 28}$$

3. Определить содержание химически связанной воды в цементном камне, приготовленном из портландцемента, имеющего следующий минералогический состав: $C_3S - 60\%$, $C_2S - 25\%$, $C_3A - 10\%$, $C_4AF - 5\%$.

Гидратацию минералов принять полной. Реакции этих минералов с водой следующие:

РАБОТА 2

ВЛИЯНИЕ ВИДА И СОДЕРЖАНИЯ АКТИВНЫХ МИНЕРАЛЬНЫХ ДОБАВОК НА СВОЙСТВА ПУЦЦОЛАНОВОГО ПОРТЛАНДЦЕМЕНТА

Пуццолановый портландцемент представляет собой гидравлическое вяжущее вещество - продукт совместного тонкого измельчения клинкера, гипса и активной минеральной добавки или тщательного смешения этих же раздельно измельченных материалов.

Содержание добавок в пуццолановом портландцементе зависит от их свойств и состава. Содержание добавок осадочного происхождения составляет 20-30%, добавок вулканического происхождения - 25-40%.

Пуццолановые цементы выгодно отличаются от портландцемента малыми значениями водоотделения, тепловыделения при твердении, повышенной плотностью цементного камня, водонепроницаемостью и высокой стойкостью в пресных и сульфатных водах.

2.1. Цель работы

В работе ставится задача изучить зависимость основных свой пуццолановых портландцементов от вида и содержания в них активных минеральных добавок, а также выявить особенности их твердения при тепловлажностной обработке.

2.2. Содержание работы

В работе необходимо изучить влияние различного содержания природных и искусственных активных минеральных добавок на водопотребность (нормальную густоту), сроки схватывания, интенсивность нарастания прочности при обычной температуре и при пропаривании, водостойкость пуццолановых цементов.

Каждое звено студентов работает с одной из добавок и приготавливает цементы следующих составов (табл. 2).

Таблица 2 Составы пуццолановых цементов

№№ состава	Содержание компонентов, %		
	портландцемент	добавки	
1	100	0	
2	80	20	
3	60	40	

Для проведения работы необходимо приготовить 2 кг вяжущего каждого состава. Приготовление смешанного вяжущего осуществляется совместным перемешиванием в лабораторной шаровой мельнице портландцемента и активной минеральной добавки, предварительно измельченной до такой же тонкости, как и портландцемент. Смешанные вяжущие готовят лаборанты. Соотношение между портландцементом и минеральной добавкой указано в табл. 2.

После приготовления цемента каждое звено определяет его нормальную густоту, сроки схватывания, готовит образцы для испытания на прочность и водостойкость. Чтобы получить представление об интенсивности твердения исследуемых цементов, эффективности их пропаривания и водостойкости, каждое звено изготовляет 12 образцов-кубиков 20х20х20 мм из теста нормальной густоты. Тесто в формах уплотняют на вибростоле в течение 1 мин, после чего образцы в формах помещают в ванну с гидравлическим завтором (температура – 20 °C, влажность – 100%) на 24 часа. Через сутки образцы расформовывают и разделяют на две части: четыре образца помещают в ванну с водой и хранят там до испытания, испытывают их в возрасте 14 суток, другие 8 образцов пропаривают в лабораторной пропарочной камере по режиму: подъем температуры до 85 °C – 3 часа, изотермический прогрев при 85 °C – 6 часов, остывание при отключенном обогреве – 2 часа.

После пропаривания образцы хранят до испытания в воздушновлажных условиях и испытывают через 14 суток после пропаривания, причем 4 образца высушивают перед испытанием до постоянной массы в термошкафу при температуре 100-105 °C, а другие образцы перед испытанием насыщают водой в течение 48 часов.

По результатам испытания на сжатие образцов, высушенных до постоянной массы и насыщенных водой, рассчитывают коэффициент размягчения как отношение прочности водонасыщенных образцов к прочности образцов, высушенных до постоянной массы.

Полученные данные по испытанию пуццолановых цементов сводят в общую таблицу, анализируют, делают выводы.

2.3. Оборудование и материалы

Для определения нормальной густоты и сроков схватывания цементного теста используют прибор Вика (п. 1.3.).

Для изготовления образцов применяют разъемные формы размером 20x20x20 мм.

Пропаривание образцов осуществляется в пропарочной камере, снабженной устройством для автоматического регулирования установленного режима пропаривания.

Испытание образцов на сжатие производится на прессе с предельной нагрузкой 10 т.

Для выполнения работы необходимы следующие материалы:

- портландцемент одного минералогического состава;
- активные минеральные добавки, имеющие тонкость помола не более 15% (при просеивании через сито с сеткой № 008): диатомит, кирпичный бой, трепел, опока, зола ТЭЦ.

2.4. Определение нормальной густоты и сроков схватывания

цементного теста производится в соответствии с п. 1.6. и 1.7. настоящих указаний.

2.5. Изготовление, хранение при твердении и испытание образцов

Изготовление образцов-кубиков производят в следующей последовательности: взвешивают 300 г цемента, высыпают в сферическую чашу, предварительно протертую влажной тканью.

Затем делают в цементе углубление, в которое вливают в один прием воду в количестве, соответствующем нормальной густоте. Углубление засыпают цементом и через 30 с после приливания воды сначала осторожно перемешивают, а затем в течение 4,5 мин энергично растирают тесто лопаткой. Затем цементное тесто переносят в гнезда формы, предварительно смазанной машинным маслом. Тесто уплотняют на вибростоле в течение 1 мин, затем поверхность образцов заглаживают ножом и производят их маркировку.

Твердение образцов и их хранение осуществляют в соответствии с п.2.2.

Испытание образцов на сжатие осуществляется в установленные сроки на прессе.

Коэффициент размягчения, характеризующий водостойкость цемента, рассчитывают в соответствии с п. 2.2. настоящих указаний.

2.6. Обработка результатов испытаний и выводы

Каждое звено студентов записывает в лабораторном журнале следующие данные: нормальную густоту и сроки схватывания цементного теста, прочность образцов нормального твердения и пропаренных в возрасте 14 суток, коэффициент размягчения.

Данные всех звеньев записывают в одну сводную таблицу, анализируют и делают выводы о влиянии вида и количества активных минеральных добавок на свойства пуццолановых цементов. На основании полученных результатов строят графики, показывающие зависимость свойств цементов от содержания в них добавок.

Зависимость свойств цементов от содержания активных минеральных добавок

Наименование	Вид и содержание добавки, %							
показателей	Без	диатомит		трепел		кирпичный		
	добавки					бой		
		20	40	20	40	20	40	
Нормальная густота, %								
Сроки схватывания:								
-начало, ч-мин								
-конец, ч-мин								
Предел прочности при								
сжатии, Мпа образцов,								
твердеющих:								
- В нормальных усло-								
виях – 14 суток								
- пропаренных образ-								
цов в возрасте 14 суток								
- высушенных								
- водонасыщенных								
Коэффициент размяг-								
чения								

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Что такое пуццолановый портландцемент?
- 2. Каков его вещественный состав?
- 3. Дайте классификацию активных минеральных добавок.
- 4. Что называется гидравлической активностью пуццолановых добавок?
- 5. Какова технология получения пуццоланового портландцемента?
- 6. Расскажите об основных свойствах пуццоланового цемента.
- 7. Каковы наиболее эффективные условия твердения пуццоланового цемента?
- 8. Назовите области применения пуццолановых цементов.

ЗАДАЧИ

- 1. Сколько нужно добавить трепела к портландцементу М 600, чтобы получить пуццолановый портландцемент М 400? Предполагается, что трепел не участвует в реакции образования цементного камня до 28-дневного возраста.
- 2. Сколько требуется добавить трепела к 5 т клинкера портландцемента М 500 и какую марку пуццоланового портландцемента можно получить, если трепел в своем составе имеет 60% активного кремнезема, а клинкер портландцемента имеет в своем составе 50% трехкальциевого силиката ($3CaOSiO_2$)?
- 3. Какой должна быть активность клинкера портландцемента для получения пуццоланового портландцемента М 500, состоящего из 75% клинкера портландцемента и 25% трепела? Принимаем, что при твердении цементного камня до 28 суток добавка трепела не вступает в реакцию.

ТЕХНИКА БЕЗОПАСНОСТИ

До начала выполнения лабораторных работ студенты должны пройти вводный инструктаж по технике безопасности, осуществляемый преподавателем. При выполнении каждой работы студентам необходимо тщательно ознакомиться с инструкциями по эксплуатации применяемого в данной работе оборудования (лабораторная растворомешалка, виброплощадка, пресс и др.). Самостоятельно работать на указанном оборудовании студенты могут только с разрешения преподавателя и в его присутствии (или в присутствии учебного мастера, лаборанта).

ЛИТЕРАТУРА

- 1. Бутт Ю,М., Сычев М М., Тимашев В.В. Химическая технология вяжущих материалов. -М.: Высшая школа, 1980. 472 с.
 - 2. ГОСТ 310.1-81-310.3-81. Цементы. Методы испытаний. 11 с.
 - 3. ГОСТ 10178-85. Портландцемент и шлакопортландцемент. -6 с.
- 4. ГОСТ 310.4-81. Цементы. Методы определения предела прочности при изгибе и сжатии. -12 с.