МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра железобетонных и каменных конструкций

УСИЛЕНИЕ ЖЕЛЕЗОБЕТОННОЙ БАЛКИ ШПРЕНГЕЛЬНЫМИ ЗАТЯЖКАМИ

Методические указания к курсовому проектированию для студентов направления 270800.62 «Строительство», профиля «Промышленное и гражданское строительство» по дисциплине «Реконструкция зданий, сооружений и застройки»

УДК 624.012.35 ББК 38.53 П14

П14 Усиление железобетонной балки шпренгельными затяжками: Методические указания к курсовому проектированию для студентов направления 270800.62 «Строительство», профиля «Промышленное и гражданское строительство» по дисциплине «Реконструкция зданий, сооружений и застройки» / Сост. Н.Г. Палагин. — Казань: Изд-во Казанск. гос. архитект.-строит. ун-та, 2014. — 15 с.

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

В методических указаниях рассмотрено усиление железобетонной балки шпренгельными затяжками в случае увеличения нагрузки. Приведен пример расчета. Предназначены к курсовому проектированию для студентов направления «Строительство», профиля «Промышленное и гражданское строительство» по дисциплине «Реконструкция зданий, сооружений и застройки».

Рецензент Кандидат технических наук, доцент кафедры «Оснований и фундаментов, динамики сооружений и инженерной геодезии» КГАСУ Д.М. Нуриева

УДК 624.012.35 ББК 38.53

- © Казанский государственный архитектурно-строительный университет, 2014
- © Палагин Н.Г., 2014

Содержание

1. Исходные данные52. Статический расчет балки63. Расчет прочности балки по нормальным сечениям74. Расчет шпренгельной затяжки85. Расчет узлов элементов усиления166. Технология выполнения работ1ЛИТЕРАТУРА1ПРИЛОЖЕНИЯ1Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы1Приложение 2. Значения нормативных и расчетных сопротивлений арматуры1Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры1Приложение 4. Сортамент арматуры1Приложение 5. Исходные данные для выполнения задания1	ВВЕДЕНИЕ	4
2. Статический расчет балки63. Расчет прочности балки по нормальным сечениям74. Расчет шпренгельной затяжки85. Расчет узлов элементов усиления106. Технология выполнения работ1ЛИТЕРАТУРА12ПРИЛОЖЕНИЯ1Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы1Приложение 2. Значения нормативных и расчетных сопротивлений арматуры1Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры1Приложение 4. Сортамент арматуры1	1. Исходные данные	5
4. Расчет шпренгельной затяжки85. Расчет узлов элементов усиления106. Технология выполнения работ1ЛИТЕРАТУРА12ПРИЛОЖЕНИЯ12Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы1Приложение 2. Значения нормативных и расчетных сопротивлений арматуры1Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры1Приложение 4. Сортамент арматуры1	2. Статический расчет балки	6
5. Расчет узлов элементов усиления166. Технология выполнения работ1ЛИТЕРАТУРА12ПРИЛОЖЕНИЯ13Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы15Приложение 2. Значения нормативных и расчетных сопротивлений арматуры15Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры15Приложение 4. Сортамент арматуры16	3. Расчет прочности балки по нормальным сечениям	7
6. Технология выполнения работ. 1 ЛИТЕРАТУРА. 1 ПРИЛОЖЕНИЯ. 1 Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы. 1 Приложение 2. Значения нормативных и расчетных сопротивлений арматуры. 1 Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры. 1 Приложение 4. Сортамент арматуры. 1	4. Расчет шпренгельной затяжки	8
ЛИТЕРАТУРА 17 ПРИЛОЖЕНИЯ 17 Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы 17 Приложение 2. Значения нормативных и расчетных сопротивлений арматуры 17 Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры 17 Приложение 4. Сортамент арматуры 14	5. Расчет узлов элементов усиления	10
ПРИЛОЖЕНИЯ	6. Технология выполнения работ	11
Приложение 1. Расчетные сопротивления тяжелого бетона для предельных состояний первой группы. 1. Приложение 2. Значения нормативных и расчетных сопротивлений арматуры. 1. Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры. 1. Приложение 4. Сортамент арматуры. 14	ЛИТЕРАТУРА	12
дельных состояний первой группы. 12 Приложение 2. Значения нормативных и расчетных сопротивлений арматуры. 12 Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры. 14 Приложение 4. Сортамент арматуры. 14	ПРИЛОЖЕНИЯ	13
Приложение 2. Значения нормативных и расчетных сопротивлений арматуры. 12 Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры. 12 Приложение 4. Сортамент арматуры. 14	Приложение 1. Расчетные сопротивления тяжелого бетона для пре-	
арматуры. 17 Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры. 17 Приложение 4. Сортамент арматуры. 14	дельных состояний первой группы	13
Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры	Приложение 2. Значения нормативных и расчетных сопротивлений	
Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от класса арматуры	арматуры	13
Приложение 4. Сортамент арматуры	Приложение 3. Значения коэффициентов ξ_R и α_R в зависимости от	
Приложение 4. Сортамент арматуры	класса арматуры	13

ВВЕДЕНИЕ

В данных методических указаниях рассматривается один из вариантов усиления изгибаемых элементов железобетонных конструкций.

Можно выделить несколько причин для создания усиления:

- изменение нагрузки;
- изменение расчетной схемы;
- коррозия материалов конструкции и др.

В указаниях предлагается рассмотреть случай увеличения нагрузки. Способ усиления – усиление с использованием предварительно напряженной стальной затяжки.

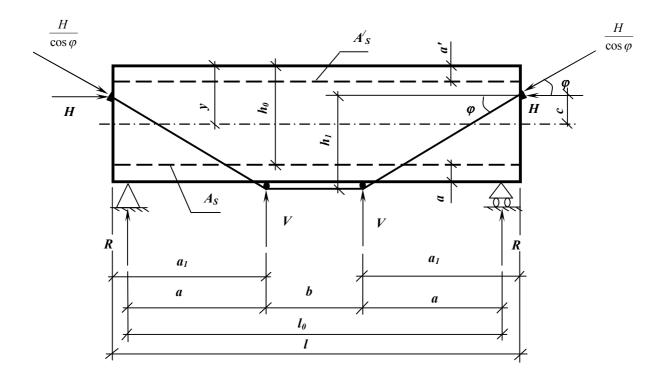


Рис. 1. Расчетная схема балки, усиленной предварительно напряженным шпренгелем

1. Исходные данные

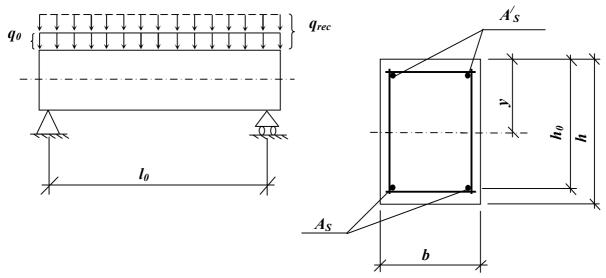


Рис. 2. К исходным данным для расчета: l_0 = 600 см; h=60 см; b=20 см; c=8 см

Характеристики бетона и арматуры. Бетон тяжелый класса B25; R_b =14,5 МПа (прил. 1); γ_{b1} =0,9; $R_b\gamma_{b1}$ =14,5·0,9=13,05 МПа.

Арматура рабочая продольная класса A400, R_s = R_{sc} =350 МПа (прил. 2).

По прил. 3 для арматуры класса A 400 находим α_R =0,391 и ξ_R =0,533.

Нагрузка до реконструкции и после, соответственно: q_0 =30 кH/м, q_{rec} =60 кH/м.

Предварительное напряжение в шпренгеле σ_{sp} =100 Мпа.

Требуется произвести расчет балки на нагрузку, действующую после реконструкции, и, в случае необходимости, усилить балку.

2. Статический расчет балки

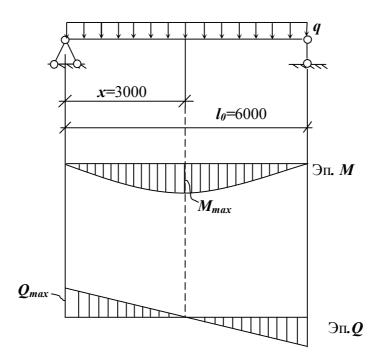


Рис. 3. Эпюры изгибающих моментов и поперечных сил в усиляемой балке

Максимальный изгибающий момент в середине пролета равен:

$$M = \frac{q \cdot l_0^2}{8}.$$

Максимальная перерезывающая сила на опоре:

$$Q = \frac{q \cdot l_0}{2}$$
 при $q = q_0 = 30$ кH/м: $M(q_0) = \frac{30 \cdot 6^2}{8} = 135$ кH·м; $Q(q_0) = \frac{30 \cdot 6}{2} = 90$ кH; при $q = q_{rec} = 60$ кH/м: $M(q_{rec}) = \frac{60 \cdot 6^2}{8} = 270$ кH·м;
$$Q(q_{rec}) = \frac{60 \cdot 6}{2} = 180$$
 кH.

3. Расчет прочности балки по нормальным сечениям

Сечение в пролете, $M(q_0) = 135 \mathrm{kH\cdot m}$; $h_0 = h - a_s = 600 - 30 = 570 \mathrm{\ mm}$ — рабочая (полезная) высота сечения, где $h = 600 \mathrm{\ mm}$ — полная высота сечения, $a_s = 30 \mathrm{\ mm}$ — расстояние от оси, нормальной к плоскости изгиба и проходящей через центр тяжести сечения растянутой арматуры, до внешнего растянутого края сечения.

Подбор продольной арматуры производится согласно [1]. Вычисляем значение:

$$\alpha_m = \frac{M(q_0)}{R_b \cdot b \cdot h_0^2} = \frac{135 \cdot 10^5}{13,05 \cdot 10^2 \cdot 20 \cdot 57^2} = 0,159 < \alpha_R = 0,391,$$

следовательно, сжатая арматура по расчету не требуется.

Монтажную сжатую арматуру принимаем: 2Ø 10 A 400 ($A_S^{/}$ = 157 мм 2 – см. сортамент арматуры в прил. 4).

Определяем: $\xi = 1 - \sqrt{1 - 2\alpha_m} = 1 - \sqrt{1 - 2 \cdot 0,159} = 0,174$; $\eta = 1 - 0,5\xi = 1 - 0,5 \cdot 0,174 = 0,913$. Требуемую площадь растянутой арматуры определяем по формуле:

$$A_s = \frac{M(q_0)}{R_S \cdot \eta \cdot h_0} = \frac{135 \cdot 10^6}{350 \cdot 0,913 \cdot 570} = 741,2 \text{ mm}^2.$$

По сортаменту арматуры (прил. 4) принимаем: $4\varnothing 16 \text{ A } 400 \text{ } (A_S = 804 \text{мm}^2).$

Поперечную арматуру принимаем конструктивно, шаг ее установки назначаем согласно [1, п. 10.3.13]. На приопорном участке балки длиной $l_0/4$ =6000/4=1500 мм требуемый шаг назначается из условий $S_1 \le 0.5 h_0$ и $S_1 \le 300$ мм, тогда $S_1 = 0.5 \cdot 570 = 285$ мм, принимаем $S_1 = 250$ мм (кратно 50 мм в меньшую сторону), что меньше 300 мм. На среднем участке длиной $l_0/2$ =6000/2=3000 мм требуемый шаг назначается из условий $S_2 \le 0.75 h_0$ и $S_2 \le 500$ мм. Тогда $S_2 = 0.75 \cdot 570 = 427.5$ мм, принимаем $S_2 = 400$ мм
500 мм. Из условия свариваемости с продольной арматурой назначаем поперечную арматуру \emptyset 4 В 500.

Определяем необходимую площадь растянутой арматуры по изгибающему моменту $M(q_{rec})$. Расчет ведем согласно [1]. Вычисляем значение

$$\alpha_m = \frac{M(q_{rec})}{R_b \cdot b \cdot h_0^2} = \frac{270 \cdot 10^5}{13,05 \cdot 10^2 \cdot 20 \cdot 57^2} = 0,318 < \alpha_R = 0,391.$$

Определяем $\xi = 1 - \sqrt{1 - 2\alpha_m} = 1 - \sqrt{1 - 2 \cdot 0.318} = 0.397$; η =1- 0.5 ξ = =1- 0.5·0.397=0.802.

Требуемую площадь растянутой арматуры определяем по формуле:

$$A_s = \frac{M(q_{rec})}{R_S \cdot \eta \cdot h_0} = \frac{270 \cdot 10^6}{350 \cdot 0,802 \cdot 570} = 1687,5 \text{ mm}^2 > 804 \text{ mm}^2.$$

Так как увеличить площадь растянутой арматуры невозможно, а также в предположении, что несущая способность балки по наклонному сечению на нагрузку, действующую после реконструкции, не обеспечивается, принимаем решение, усилить балку шпренгельными затяжками.

4. Расчет шпренгельной затяжки

Площадь затяжки определяем методом подбора из условия

$$H = \left\lceil \frac{M(q_{rec}) - M(q_0)}{h_1} + \sigma_{sp} \cdot A_S \right\rceil \cdot 0.8 \le 0.8 \cdot R_S \cdot A_S, \tag{1}$$

где h_1 — расстояние от точки крепления затяжки до центра тяжести шпренгеля на горизонтальном участке, предварительно принимаем:

$$h_1 = \frac{h}{2} + c + 50$$
 mm $= \frac{600}{2} + 80 + 50 = 430$ mm.

Первоначально примем затяжки из $2\varnothing 28$ A400 (A_S =1232мм²) и проверим условие (1):

$$H = \left[\frac{(270 - 135) \cdot 10^6}{430} + 100 \cdot 1232 \right] \cdot 0.8 = 349723 \text{ H} > 0.8 \cdot 350 \cdot 1232 = 0.8 \cdot 350 \cdot 12$$

=344960 H.

Условие (1) не выполняется, поэтому увеличиваем сечение затяжек до $2\emptyset 32 \text{ A}400 \ (A_S=1609 \text{ мм}^2)$:

$$H = \left[\frac{(270 - 135) \cdot 10^6}{430} + 100 \cdot 1609 \right] \cdot 0.8 = 379883 \text{ H} < 0.8 \cdot 350 \cdot 1609 = 0.000$$

=450520 H.

Таким образом затяжки принимаем из $2\emptyset 32$ A400 при величине распора H=379883 H.

Уточняем значение h_1 :

$$h_1 = \frac{h}{2} + c + d_{s,on} + \delta_{n\tau} + \frac{d_s}{2} = \frac{600}{2} + 80 + 40 + 4 + \frac{32}{2} = 440 \text{ MM},$$

где $d_{s,on}$ = 40 мм – диаметр опорной детали, устанавливаемой в месте сгиба затяжек.

Определяем значение ϕ из системы выражений:

$$\begin{cases} V = Q(q_{rec}) - Q(q_0); \\ V = H \cdot tg\varphi \end{cases}$$
 (2)

Подставим выражение (2) в (3) и решим его относительно φ :

$$Q(q_{rec}) - Q(q_0) = H \cdot tg\varphi$$
;

$$tg\varphi = \frac{Q(q_{rec}) - Q(q_0)}{H} = \frac{(180 - 90)10^3}{379883} = 0,273, \ \varphi = 13,33^0.$$

Согласно рис. 1,

$$tg\varphi = \frac{h_1}{a_1} \approx \frac{\frac{h}{2} + c}{a}.$$
 (4)

Откуда

$$a \approx \frac{\frac{h}{2} + c}{tg\varphi} = \frac{\frac{600}{2} + 80}{0,273} = 1603 \text{ MM}.$$

Принимаем *a*=1600 мм.

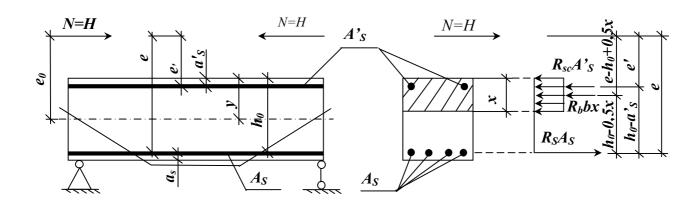


Рис. 4. К проверке прочности усиленной балки на внецентренное сжатие

Проверяем прочность усиленной балки как внецентренно сжатого элемента (рис. 4):

$$e_0 = \frac{M_{\Pi}}{N} = \frac{M_{\Pi}}{H} = \frac{156,39}{379.83} = 0,412 \text{ M} = 41,2 \text{ cm},$$

где $M_{II} = M(g_{rec}) + H \cdot c - V \cdot a = 270 + 379,883 \cdot 0,08 - 90 \cdot 1,6 = 156,39 \ кH \cdot м - изгибающий момент в системе от полной нагрузки;$

$$V$$
- по формуле (2), V =180-90=90 кH; $e = e_0 - y + h_0$ =41,2-30+57=68,2 см; $e' = e_0 - y + a'_S = 41,2-30+3=14,2$ см.

Составим сумму проекций внутренних и внешних усилий на продольную ось балки при N=H и найдем высоту сжатой зоны бетона x:

$$\Sigma N = 0$$
 $R_S \cdot A_S - R_b \cdot b \cdot x - R_{SC} \cdot A_S^{\prime} + N = 0$;
350.804–13.05.200·x-350.157+379883=0:

$$x=232 \text{ MM} < \xi_R \cdot h_0 = 0.531.570 = 302.7 \text{ MM}.$$

Прочность балки проверяем по условию:

$$N \cdot e \le R_b \cdot b \cdot x(h_0 - 0.5x) + R_{sc} \cdot A_S^{\prime} \cdot (h_0 - a_s^{\prime})$$

 $379883.682.10^{-6} = 259,08 \text{ kH·m} < [13,05.200.232(570-0,5.232) + 350.157(570-30)] \cdot 10^{-6} = 304,60 \text{ kH·m},$

т.е. балка обладает достаточной несущей способностью.

5. Расчет узлов элементов усиления

Высота гайки определяется длиной резьбы. Резьба гайки и шпренгеля работает на срез.

Материал гайки принимаем такой же, как и у шпренгеля, т.е. сталь класса А 400, R_{yn} = R_{sn} =400 МПа, поэтому достаточно выполнить расчет на срез только для гайки.

Расчетное сопротивление срезу материала гайки:

$$R_{cp} = 0.58 \cdot \frac{R_{yn}}{\gamma_{yn}} = 0.58 \cdot \frac{400}{1.05} = 221 \,\text{M}\Pi a.$$

Величину основания резьбы принимаем s_p =4 мм (рис. 5).

Площадь среза определяется по формуле:

$$A_{cp} = 2\pi \cdot r \cdot s_p = 2 \cdot 3,14 \cdot 12,5 \cdot 4 = 314 \text{ мм}^2$$
, где $r = \frac{32 - 3}{2} - 2 = 12,5 \text{ мм}$.

Несущая способность одного витка резьбы:

$$N_{cp} = R_{cp} \cdot \gamma_c \cdot A_{cp} \cdot n_{cp} = 221 \cdot 0.9 \cdot 314 \cdot 1 = 62.5 \cdot 10^3 \text{ H} = 62.5 \text{ kH}.$$

Число витков резьбы:

$$n_e = \frac{N}{N_{cp}} = \frac{170.9}{62.5} = 2.8,$$

где
$$N = \frac{1}{2} \cdot \sqrt{(V \cdot ctg\varphi)^2 + V^2} = \frac{1}{2} \sqrt{(90 \cdot 3,663)^2 + 90^2} = 170,9$$
 кH.

Принимаем n_e = 3 шт.

Высота гайки равна:

$$h_{\Gamma} = n_e \cdot s_p + s_p = 3.4 + 4 = 16 \text{ mm}.$$

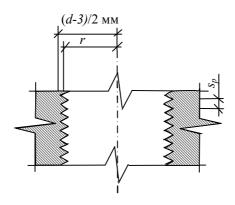


Рис. 5. К расчету резьбы гайки

6. Технология выполнения работ

Работы по усилению железобетонного элемента должны выполняться в следующей последовательности:

- 1) насечь поверхностный бетон конструкции;
- 2) установить опорные устройства затяжек;
- 3) подлить соприкасающиеся плоскости цементным раствором;
- 4) натянуть шпренгельные затяжки на бетон посредством натяжных гаек и обязательно контролировать величину натяжения с помощью динамометрического ключа.

ЛИТЕРАТУРА

- 1. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. М., 2012. 155 с.
- 2. Бедов А.И., Сапрыкин В.Ф. Обследование и реконструкция железобетонных и каменных конструкций эксплуатируемых зданий и сооружений. М.: Изд-во АСВ, 1995. 192 с.

ПРИЛОЖЕНИЯ

Приложение 1 Расчетные сопротивления тяжелого бетона для предельных состояний первой группы

					<u> </u>	F 3											
	Расчетные сопротивления тяжелого бетона R _b , R _{bt} , Мпа, для предельных																
Вид	сост	состояний первой группы при классе бетона по прочности на сжатие									состояний первой группы при классе бетона по прочност						
	B15	B20	B25	B30	B35	B40	B45	B50	B55	B60							
Сжатие осе-																	
вое (приз-																	
менная	8,5	11,5	14,5	17,0	19,5	22,0	25,0	27,5	30,0	33,0							
прочность)																	
R_b																	
Растяжение	0.75	0.00	1.05	1 15	1.20	1.40	1.50	1.60	1.70	1.90							
осевое R _{bt}	0,75	0,90	1,05	1,15	1,30	1,40	1,50	1,60	1,70	1,80							

Приложение 2 Значения нормативных и расчетных сопротивлений арматуры

				J 1		
Класс	Номинальный диаметр арматуры, мм	Значения нор- мативных со-	Значения расчетных сопротивлений арматуры, МПа			
		противлений арматуры рас-	_	сжатию, R_{sc}		
арматуры		тяжению $R_{s,n}$,	растяжению, R_s			
		МПа				
A240	6-40	240	210	210		
A400	6-40	400	350	350		
A500	10-40	500	435	435(400)		
A600	10-40	600	520	470(400)		
A800	10-32	800	695	500(400)		
A1000	10-32	1000	870	500(400)		

Примечание. Значения R_{sc} в скобках используют только при расчете на кратковременное действие нагрузки.

$\label{eq:1.1} Приложение 3 \\ Значения <math>\xi_R$ и α_R в зависимости от класса арматуры

Класс арма-A240 A1000 A400 A500 A600 A800 туры Значение ξ_R 0,615 0,533 0,493 0,459 0,401 0,357 Значение α_R 0,426 0,391 0,371 0,354 0,321 0,293

Приложение 4

Сортамент арматуры

	Расчетная площадь поперечного стержня, мм ² , при числе стержней													
Номиналь- ный диаметр стержня, мм	1	2	3	<u>м</u> , при	5	6	7	8	9	тичес- кая масса 1 м длины арма- туры, кг	A240, A400	A500, A600	A800, A1000	B500
3	7,1	14,1	21,2	28,3	35,3	42,4	49,5	56,5	63,6	0,052	-	-	-	+
4	12,6	25,1	37,7	50,2	62,8	75,4	87,9	100,5	113	0,092	-	-	-	+
5	19,6	39,3	58,9	78,5	98,2	117,8	137,5	157,1	176,7	0,144	-	-	-	+
6	28,3	57	85	113	141	170	198	226	254	0,222	+	ı	ı	+
8	50,3	101	151	201	251	302	352	402	453	0,395	+	ı	ı	+
10	78,5	157	236	314	393	471	550	628	707	0,617	+	+	+	+
12	113,1	226	339	452	565	679	792	905	1018	0,888	+	+	+	+
14	153,9	308	462	616	769	923	1077	1231	1385	1,208	+	+	+	+
16	201,1	402	603	804	1005	1206	1407	1608	1810	1,578	+	+	+	+
18	254,5	509	763	1018	1272	1527	1781	2036	2290	1,998	+	+	+	ı
20	314,2	628	942	1256	1571	1885	2199	2513	2828	2,466	+	+	+	ı
22	380,1	760	1140	1520	1900	2281	2661	3041	3421	2,984	+	+	+	ı
25	490,9	982	1473	1963	2454	2945	3436	3927	4418	3,84	+	+	+	•
28	615,8	1232	1847	2463	3079	3685	4310	4926	5542	4,83	+	+	+	-
32	804,3	1609	2413	3217	4021	4826	5630	6434	7238	6,31	+	+	+	•
36	1017,9	2036	3054	4072	5089	6107	7125	8143	9161	7,99	+	+	ı	ı
40	1256,6	2513	3770	5027	6283	7540	8796	10093	11310	9,865	+	+	-	-

Приложение 5 Исходные данные для выполнения задания

NC.		Размер		Кла		Нагрузка, кН/м		
№ ва- риан- та	l_0	h	ь	С	бетона	арма- туры A_s	q_0	q_{rec}
1	600	60	20	2	B20	A400	30	50
2	620	65	30	4	B25	A500	30	55
3	640	65	30	6	B30	A400	30	60
4	660	65	30	8	B20	A500	30	50
5	680	70	30	10	B25	A400	30	55
6	700	70	30	12	B30	A500	30	60
7	720	70	30	14	B20	A400	30	50
8	740	75	30	16	B25	A500	30	55
9	760	75	30	18	B30	A400	30	60
10	780	75	30	20	B20	A500	30	50
11	800	80	35	22	B25	A400	30	55
12	820	85	35	24	B30	A500	30	60
13	840	80	35	26	B20	A400	30	50
14	860	85	35	28	B25	A500	30	65
15	880	85	35	30	B30	A400	30	60
16	900	85	30	32	B20	A500	30	50
17	880	85	30	34	B25	A400	30	55
18	860	85	30	36	B30	A500	30	60
19	840	80	30	40	B20	A400	30	50
20	820	80	30	38	B25	A500	30	55
21	800	80	30	36	B30	A400	30	60
22	780	80	30	34	B20	A500	30	50
23	760	75	35	32	B25	A400	30	55
24	740	75	35	30	B30	A500	30	60
25	720	70	35	28	B20	A400	30	50
26	700	70	35	26	B25	A500	30	55
27	680	70	35	24	B30	A400	30	60
28	660	70	35	22	B20	A500	30	50
29	620	70	35	20	B25	A400	30	55
30	600	65	25	18	B30	A500	30	60

Примечание. Предварительное напряжение в шпренгельной затяжке принимается: σ_{sp} =100 МПа.

УСИЛЕНИЕ ЖЕЛЕЗОБЕТОННОЙ БАЛКИ ШПРЕНГЕЛЬНЫМИ ЗАТЯЖКАМИ

Методические указания к курсовому проектированию для студентов направления 270800.62 «Строительство», профиля «Промышленное и гражданское строительство» по дисциплине «Реконструкция зданий, сооружений и застройки»

Составитель Палагин Н.Г.