МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ МАЛОГО МОСТА

Методические указания к выполнению курсового проекта для студентов, обучающихся по направлению «Строительство» по профилю «Автомобильные дороги» и «Автодорожные мосты»

УДК 625

ББК 38.773

Л 69

Методические указания к выполнению курсового проекта «Гидравлический расчёт малого моста» / Сост.: Логинова О.А. Казань. КГАСУ, 2012. – 13 с.

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

В методических указаниях дается последовательность расчета малого моста. Определяется уровень воды до и после строительства моста, высота моста и отверстие моста.

УДК 625 ББК 38.773

© Казанский государственный архитектурно-строительный университет, 2012 г.

© Логинова О.А., 2012

ВВЕДЕНИЕ

Основной целью курсового проекта является закрепление знаний и приобретения навыков практического решения вопросов, связанных с гидравлическим расчетом малого моста. В процессе проектирования производится расчет отверстия моста и определяется его высота и длина. Студент должен приобрести умение пользоваться справочной и нормативной литературой.

СОСТАВ КУРСОВОЙ РАБОТЫ

- 1. Задание на выполнение курсовой работы (выдается руководителем).
- 2. Пояснительная записка.

Пояснительная записка может быть представлена в виде рукописи или напечатанной на компьютере с соблюдением требований Международной системы единиц (СИ), ГОСТов, СНиПов, а также стандартов КГАСУ.

В пояснительной записке приводится рисунок схемы малого моста.

1. РАСЧЕТ МАЛОГО МОСТА

2.1. Определение бытовых условий протекания воды в русле

Бытовые условия при данном расходе $Q_{\text{расч}}$ производятся графоаналитическим путем. Кривая расходов Q = f(h) строится для поперечного сечения потока в створе малого моста. Её координаты получаются путем расчета расходов для нескольких глубин потока.

Порядок расчета следующий:

- 1. Задаются произвольно тремя значениями глубин в русле перед сооружением h_1 , h_2 , h_3 (задается глубина воды в русле от 0.2 до 2.5 м).
 - 2. Для каждой глубины определяются расход Q_i по формуле:

$$Q_{i} = \frac{R_{i}^{2/3} \times \omega_{i} \times i_{coop}}{n}, \qquad (1)$$

где ω_i - площадь живого сечения потока при глубине h $_i$, м 2 ;

$$\omega_i = \frac{m_1 + m_2}{2} \times h_i^2 \,, \tag{2}$$

где m_1 , m_2 – заложение откосов склона (по заданию);

 χ_{i} – смоченный периметр, м;

$$\chi_{i} = h_{i} \times \left(\sqrt{1 + m_{1}^{2}} + \sqrt{1 + m_{2}^{2}} \right), \tag{3}$$

R_i - гидравлический радиус, м;

$$R_i = \frac{\omega_i}{\chi_i},\tag{4}$$

n - коэффициент шероховатости русла (принимается по табл.1); i_{coop} – уклон реки у сооружения (уклон лога – по заданию);

Таблица 1

No	Тип волотока и поверущести вусла	Коэффициент
п/п	Тип водотока и поверхности русла	шероховатости, п
1	Русла чистые прямые	0,03
2	Русла прямые при наличии камней и растительности	0,035
3	Русла чистые, извилистые	0,04
4	Русла чистые, извилистые при наличии камней и растительности	0,045
5	Русла при наличии участков с медленным течением, зарослей и глубоких омутов	0,07
6	Русла с весьма заросшими участками, глубокими омутами или при наличии кустарника и завалов деревьями	0,10

Результаты расчета сводятся в таблицу 2.

Таблица 2

h _i , м	ω , m^2/c	χ, Μ	R, м	Q , M^3/c
h_1				
h_2				
h ₃				

3. По полученным значениям h_i и Q_i строится график в координатах h и Q. Бытовая глубина $h_{\rm B}$ определяется для расчетного расхода $Q_{\rm pacu}$ (см. задание) по построенной кривой (рис. 1).

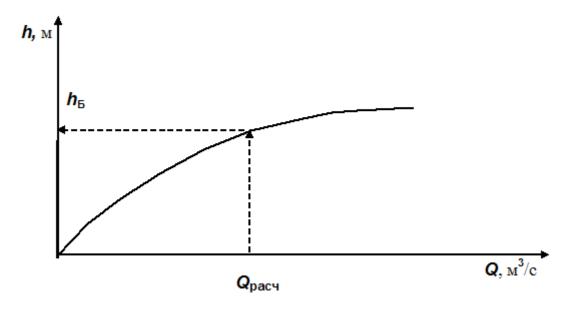


Рис. 1. Кривая расходов

2.2. Расчет отверстия малого моста

Расчет отверстия моста производится в следующей последовательности:

- 1. Назначается тип укрепления подмостового русла и соответствующая ему допускаемая скорость течения воды $V_{\it o}$ м/с (табл. 1, ПРИЛ. 1).
 - 2. Определяется критическая глубина потока

$$h_{K} = \frac{v_{\mathcal{A}}^{2}}{g} \tag{5}$$

<

где g – ускорение силы тяжести, равное 9,8 м/ c^2 ;

3. Установим режим протекания потока под мостом:

при
$$1,3 \times h_{\scriptscriptstyle K} \ge h_{\scriptscriptstyle B}$$
 - свободное протекание; (6)

при
$$1,3 \times h_{\scriptscriptstyle K} < h_{\scriptscriptstyle B}$$
 - несвободное протекание. (7)

- 4. Рассчитывается величина подпора H и отверстия моста B. Подпор H и отверстие моста B определяются в зависимости от режима протекания по следующим формулам:
 - при свободном протекании

$$H = 1,45 \times h_{K}, M \tag{8}$$

$$B = \frac{Q_{PACY}}{1,35 \times H^{\frac{3}{2}}}, \text{M}$$
 (9)

- при несвободном протекании

$$H = h_{\scriptscriptstyle E} + \frac{h_{\scriptscriptstyle K}}{2\varphi^2}, M \tag{10}$$

где φ коэффициент скорости ($\varphi = 0.85$).

$$B = \frac{Q_{PACY}}{h_{\scriptscriptstyle B} \times v_{\scriptscriptstyle I}} , m \tag{11}$$

2.3. Определение минимальной высоты моста

Примем размер балок пролетного строения, исходя из условия, чтобы отверстие моста в свету было больше требуемого отверстия (табл. 3).

Минимальная высота моста определяется по формуле:

$$h_{\scriptscriptstyle M} = 0.88 \times H + \Delta + h_{\scriptscriptstyle KOH} \,,\, M \tag{12}$$

где Δ - возвышение низа пролетного строения над уровнем воды ($\Delta=0.5$ м);

 $h_{\kappa o H}$ - конструктивная высота. Конструктивная высота принимается в зависимости от типа балки (табл. 3);

Н – подпор, м.

Таблица 3

							,
Пролет балки в свету, м	11,4	14,4	17,4	20,4	23,4	32,0	35,0
Длина балки про- летного строения, м	12	15	18	21	24	33	36
Конструктивная высота $h_{\text{кон}}$, м	1,12	1,12	1,42	1,42	1,42	1,74	1,74

Далее вычерчивается схема малого моста (рис. 1, ПРИЛОЖЕНИЕ 1).

ЛИТЕРАТУРА

- 1. Автомобильные дороги. Примеры проектирования / Под ред. В.С. Порожнякова. М.: Транспорт, 1983. 303 с.
- 2. Бабков В.Ф., Андреев С.В. Проектирование автомобильных дорог.-Ч.1.-М.: Транспорт, 1983. 310 с.
- 3. СНиП 2.01.14-83. Определение расчетных гидрологических характеристик / Госстрой СССР. М.: Стройиздат.1985. 36 с;
- 4. СНиП 2.05.03-84. Мосты и трубы / Госстрой СССР. М.: Стройиздат, 1986. 200 с.
- 5. Проектирование автомобильных дорог: Справочник инженерадорожника / Под ред. Г.А. Федотова. М.: Транспорт, 1989. 437 с.
- 6. Пособие по гидравлическим расчетам малых водопропускных сооружений М.: Транспорт, 1992. 408 с.

ПРИЛОЖЕНИЕ 1 Таблица 1

пролетного	пролетного м	Гнас, М	нок)	оп ви		Предельные расходы $\mathbf{Q}_{\mathbf{np}}$, м ³ /с, допускаемые скорости под мостом $\mathbf{v}_{\mathbf{доп}}$, м/с и соответствующие им глубины \mathbf{H} и $\mathbf{h}_{\scriptscriptstyle M}$, м при типах укрепления														
проле Кв. М проле Св. М	проле $\ell_{ m o,M}$	асыпи Е	(см. рисунок)	отверстия 1	Кам	ленная наброска			Монолитный бетон			Плиты 50×50 , толщиной $\delta = 10$ см				Гибкие плитные по- крытия толщиной δ=7.5 см				
Длина строения	Длина строения	Высота насыпи Н _{нас} ,	$\Delta \ell_{ m o}$, M (G	Ширина дну b _{ин} ,м	$rac{ ext{Q_{IIP}}}{ ext{M}^3/ ext{C}},$	V доп , М/С	Н	$h_{\scriptscriptstyle \mathcal{M}}$	$rac{Q_{np}}{M^{3/c}}$	V доп , М/С	Н	$h_{\scriptscriptstyle \mathcal{M}}$	${ m Q_{iip} \over M^3/c}$	V доп , М/С	Н	$h_{\scriptscriptstyle \mathcal{M}}$	$rac{Q_{iip}}{M^{3/c}}$	V доп, М/С	Н	$h_{\scriptscriptstyle \mathcal{M}}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
							Схема	<i>1</i> . Mo	ст с ма	ссивн	ыми с	порам	ИИ							
6,00	4.60	2,5	0,40	3,20	1,6				15,5	4,43	2,00	0,87	2,8				2,2			
	4,60	6,0	0,85	2,90	1,2			41,6 4,95 2,5 42,6 5,42 3,0 68,1 5,42 3,0	21,7	5,42	3,00	1,33	2,1				1,7			
9,30	7,90	3,0	0,30	7,30	3,10				41,6	4,95	2,50	1,09	5,4				4,2			
9,30	7,90	8,0	1,10	5,70	2,40				42,6	5,42	3,00	1,33	4,2				3,3			
11,50	10,00	3,5	0,45	9,10	3,8	2,08	0,44		3,00	1,33	6,7	2,50 0,64	64 029	5,2	2,29	0.54	0.25			
11,30	10,00	8,0	1,20	7,60	3,2	2,08	0,44	0,20	56,9	5,42	3,00	1,33	5,6	2,30	0,04	029	4,3	2,29	0,54	0,25
13,50	12,00	5,0	0,80	10,40	4,4				77,8	5,42	3,00	1,33	7,7				5,9			
15,50	12,00	8,0	1,20	9,60	4,0				71,8	5,42	3,00	1,33	7,1				5,5			
16,50	15,00	5,0	0,8	13,40	5,6				100,3	5,42	3,00	1,33	9,9				7,7			
10,50	13,00	8,0	1,20	12,60	5,3				94,3	5,42	3,00	1,33	9,3				7,2			

Продолжение таблицы 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21				
	Схема 2. Мост с обсыпными устоями																							
9,30		3,00	-	5,32	2,4							38,4	4,86	2,41	1,13	4,3					3,3			
9,30	-	4,00	-	2,32	1,1						34,2	5,42	3,00	1,41	2,1				1,6					
11,50		3,0	-	7,52	3,3		2,08 0,44 0,2		46,1	4,74	2,29	1,07	5,9			0.30	4,5							
11,50	-	4,0	-	4,52	2,0	2.08		0,20	50,6	5,42	3,00	1,41	3,7	2,50	0,64		0,30	0.30	2,8	2,29	0,54	0,25		
13,50	-	3,0	-	9,52	4,1	2,00			51,7 4,0	,= 0		51,7	4,62	2,18	1,01	7,4	2,50	0,01	0,50	5,7	2,2)	0,51	0,23	
		5,0	-	3,52	1,6					5,42	3,00	1,41	2,9				2,2							
16,50	-	3,0	-	12,52	5,4				54,4	4,36	1,94	0,90	9,6				7,4							
		5,0	-	6,52	2,9				65,6	5,42	3,00	1,14	5,2				4,0							

Примечание. Схемы мостов приведены на рисунке ниже.

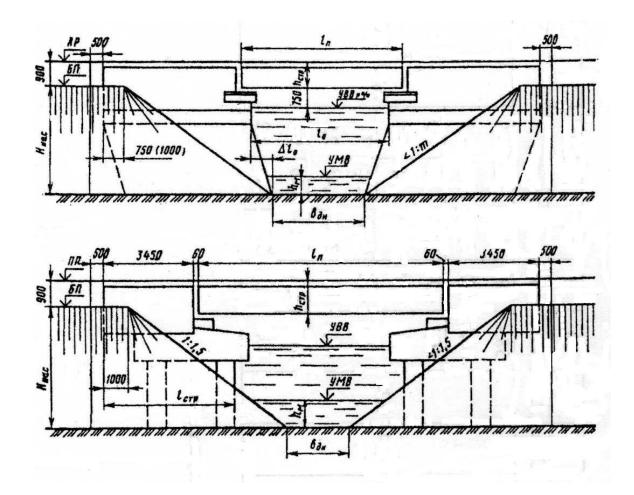


Рис. 1. Схемы малых однопролетных мостов

О.А.Логинова

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ МАЛОГО МОСТА

Редактор

Корректор

Подписано в печать Заказ № Печать риз

Тираж

Печать ризографическая экз. Бумага офсетная № 1

Формат 60х84/16

Усл. - печ. л. Уч. - изд. л.

Издательство КГАСУ 420043, Казань, Зеленая, 1